1
|
Podosokorskaya OA, Elcheninov AG, Novikov AA, Merkel AY, Kublanov IV. Fontisphaera persica gen. nov., sp. nov., a thermophilic hydrolytic bacterium from a hot spring of Baikal lake region, and proposal of Fontisphaeraceae fam. nov., and Limisphaeraceae fam. nov. within the Limisphaerales ord. nov. (Verrucomicrobiota). Syst Appl Microbiol 2023; 46:126438. [PMID: 37263084 DOI: 10.1016/j.syapm.2023.126438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
A novel facultatively anaerobic moderately thermophilic bacterium, strain B-154 T, was isolated from a terrestrial hot spring in the Baikal lake region (Russian Federation). Gram-negative, motile, spherical cells were present singly, in pairs, or aggregates, and reproduced by binary fission. The strain grew at 30-57 °C and within a pH range of 5.1-8.4 with the optimum at 50 °C and pH 6.8-7.1. Strain B-154 T was a chemoorganoheterotroph, growing on mono-, di- and polysaccharides (xylan, starch, galactan, galactomannan, glucomannan, xyloglucan, pullulan, arabinan, lichenan, beta-glucan, pachyman, locust bean gum, xanthan gum). It did not require sodium chloride or yeast extract for growth. Major cellular fatty acids were anteiso-C15:0, iso-C16:0 and iso-C14:0. The respiratory quinone was MK-7. The complete genome of strain B-154 T was 4.73 Mbp in size; its G + C content was 61%. According to the phylogenomic analysis strain B-154 T forms a separate family-level phylogenetic lineage. Moreover, together with Limisphaera ngatamarikiensis and "Pedosphaera parvula" this strain forms a separate order-level phylogenetic lineage within Verrucomicrobiae class. Hence, we propose a novel order, Limisphaerales ord. nov., with two families Limisphaeraceae fam. nov. and Fontisphaeraceae fam. nov., and a novel genus and species Fontisphaera persica gen. nov., sp. nov. with type strain B-154 T. Ecogenomic analysis showed that representatives of the Limisphaerales are widespread in various environments. Although some of them were detected in hot springs the majority of Limisphaerales (54% of the studied metagenome-assembled genomes) were found in marine habitats. This study allowed a better understanding of physiology and ecology of Verrucomicrobiota - a rather understudied bacterial phylum.
Collapse
Affiliation(s)
- Olga A Podosokorskaya
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia.
| | - Alexander G Elcheninov
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Andrei A Novikov
- Gubkin University, 65/1 Leninsky Prospect, 119991 Moscow, Russia
| | - Alexander Y Merkel
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| |
Collapse
|
2
|
Chiang E, Schmidt ML, Berry MA, Biddanda BA, Burtner A, Johengen TH, Palladino D, Denef VJ. Verrucomicrobia are prevalent in north-temperate freshwater lakes and display class-level preferences between lake habitats. PLoS One 2018; 13:e0195112. [PMID: 29590198 PMCID: PMC5874073 DOI: 10.1371/journal.pone.0195112] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/17/2018] [Indexed: 01/10/2023] Open
Abstract
The bacterial phylum Verrucomicrobia was formally described two decades ago and originally believed to be a minor member of many ecosystems; however, it is now recognized as ubiquitous and abundant in both soil and aquatic systems. Nevertheless, knowledge of the drivers of its relative abundance and within-phylum habitat preferences remains sparse, especially in lake systems. Here, we documented the distribution of Verrucomicrobia in 12 inland lakes in Southeastern Michigan, a Laurentian Great Lake (Lake Michigan), and a freshwater estuary, which span a gradient in lake sizes, depths, residence times, and trophic states. A wide range of physical and geochemical parameters was covered by sampling seasonally from the surface and bottom of each lake, and by separating samples into particle-associated and free-living fractions. On average, Verrucomicrobia was the 4th most abundant phylum (range 1.7–41.7%). Fraction, season, station, and depth explained up to 70% of the variance in Verrucomicrobia community composition and preference for these habitats was phylogenetically conserved at the class-level. When relative abundance was linearly modeled against environmental data, Verrucomicrobia and non-Verrucomicrobia bacterial community composition correlated to similar quantitative environmental parameters, although there were lake system-dependent differences and > 55% of the variance remained unexplained. A majority of the phylum exhibited preference for the particle-associated fraction and two classes (Opitutae and Verrucomicrobiae) were identified to be more abundant during the spring season. This study highlights the high relative abundance of Verrucomicrobia in north temperate lake systems and expands insights into drivers of within-phylum habitat preferences of the Verrucomicrobia.
Collapse
Affiliation(s)
- Edna Chiang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Marian L. Schmidt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Michelle A. Berry
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Bopaiah A. Biddanda
- Annis Water Resources Institute, Grand Valley State University, Muskegon, MI, United States of America
| | - Ashley Burtner
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, United States of America
| | - Thomas H. Johengen
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, United States of America
| | - Danna Palladino
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, United States of America
| | - Vincent J. Denef
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
3
|
Impact of single-cell genomics and metagenomics on the emerging view of extremophile "microbial dark matter". Extremophiles 2014; 18:865-75. [PMID: 25113821 DOI: 10.1007/s00792-014-0664-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/05/2014] [Indexed: 10/24/2022]
Abstract
Despite >130 years of microbial cultivation studies, many microorganisms remain resistant to traditional cultivation approaches, including numerous candidate phyla of bacteria and archaea. Unraveling the mysteries of these candidate phyla is a grand challenge in microbiology and is especially important in habitats where they are abundant, including some extreme environments and low-energy ecosystems. Over the past decade, parallel advances in DNA amplification, DNA sequencing and computing have enabled rapid progress on this problem, particularly through metagenomics and single-cell genomics. Although each approach suffers limitations, metagenomics and single-cell genomics are particularly powerful when combined synergistically. Studies focused on extreme environments have revealed the first substantial genomic information for several candidate phyla, encompassing putative acidophiles (Parvarchaeota), halophiles (Nanohaloarchaeota), thermophiles (Acetothermia, Aigarchaeota, Atribacteria, Calescamantes, Korarchaeota, and Fervidibacteria), and piezophiles (Gracilibacteria). These data have enabled insights into the biology of these organisms, including catabolic and anabolic potential, molecular adaptations to life in extreme environments, unique genomic features such as stop codon reassignments, and predictions about cell ultrastructure. In addition, the rapid expansion of genomic coverage enabled by these studies continues to yield insights into the early diversification of microbial lineages and the relationships within and between the phyla of Bacteria and Archaea. In the next 5 years, the genomic foliage within the tree of life will continue to grow and the study of yet-uncultivated candidate phyla will firmly transition into the post-genomic era.
Collapse
|
4
|
Arnds J, Knittel K, Buck U, Winkel M, Amann R. Development of a 16S rRNA-targeted probe set for Verrucomicrobia and its application for fluorescence in situ hybridization in a humic lake. Syst Appl Microbiol 2010; 33:139-48. [PMID: 20226613 DOI: 10.1016/j.syapm.2009.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/21/2009] [Accepted: 12/23/2009] [Indexed: 12/21/2022]
Abstract
Members of the highly diverse bacterial phylum Verrucomicrobia are globally distributed in various terrestrial and aquatic habitats. They are key players in soils, but little is known about their role in aquatic systems. Here, we report on the design and evaluation of a 16S rRNA-targeted probe set for the identification of Verrucomicrobia and of clades within this phylum. Subsequently, the probe set was applied to a study concerning the seasonal abundance of Verrucomicrobia in waters of the humic lake Grosse Fuchskuhle (Germany) by catalyzed reporter deposition fluorescence in situ hybridization. The lake hosted diverse Verrucomicrobia clades in all seasons. Either Spartobacteria (up to 19%) or Opitutus spp. (up to 7%) dominated the communities, whereas Prosthecobacter spp. were omnipresent in low numbers (<1%). Verrucomicrobial abundance and community composition varied between the seasons, and between more and less humic basins, but were rather stable in oxic and seasonally anoxic waters.
Collapse
Affiliation(s)
- Julia Arnds
- Max Planck Institute for Marine Microbiology, Department of Molecular Ecology, Celsiusstrasse 1, 28359 Bremen, Germany
| | | | | | | | | |
Collapse
|
5
|
Abstract
The prosthecae (stalks) of dimorphic caulobacters of the genera Caulobacter and Asticcacaulis are distinguished among such appendages by the presence of disk-like components known as stalk bands. Whether bands are added to a cell's stalk(s) as a regular event coordinated with the cell's reproductive cycle has not been settled by previous studies. Analysis of the frequency of stalks with i, i + 1, i + 2, etc. bands 'among more than 7,000 stalks of Caulobacter crescentus revealed that in finite (batch) cultures (in which all offspring accumulate), the proportion of stalks with i + 1 hands was regularly 50% of the proportion of stalks with i bands. This implied that the number of bands correlated with the number of reproductive cycles completed by a stalked cell. In chemostat-maintained perpetual cultures, the proportion was greater than 50% because stalked cells, with their shorter reproductive cycle times, contributed a larger proportion of offspring to the steady-state population than did their swarmer siblings. In Asticcacaulis biprosthecum cells, which bear twin prosthecae, the twins on a typical cell possessed the same number of bands. For both genera, stalk bands provide a unique morphological feature that could be employed in an assessment of age distribution and reproductive dynamics within natural populations of these caulobacters.
Collapse
Affiliation(s)
- J S Poindexter
- Department of Biological Sciences, Barnard College/Columbia University, New York 10027, USA
| | | |
Collapse
|
6
|
|
7
|
Staley JT, Marshall KC, Skerman VB. Budding and prosthecate bacteria from freshwater habitats of various trophic states. MICROBIAL ECOLOGY 1980; 5:245-251. [PMID: 24232512 DOI: 10.1007/bf02020332] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Budding and prosthecate bacteria were enumerated in spring and summer by viable counting procedures in several freshwater habitats in Australia including oligotrophic lakes, a mesotrophic lake, and eutrophic ponds.Caulobacter spp. were the most numerous type encountered. They were present in the highest concentrations (exceeding 1000/ml) in the mesotrophic lake during the summer. Their proportion to total viable heterotrophic bacteria was also highest (35.1 to 37.7) in this habitat. From 17 to 330/mlCaulobacter spp. were counted in the eutrophic habitats where their proportion to total viable numbers was less than 1.0%. In the oligotrophic lakes they varied from 5 to 23/ml and comprised greater than 5% of the total viable count.Hyphomicrobium- like bacteria were also numerous in the mesotrophic lake and in one oligotrophic lake during the summer sampling period.Ancalomicrobium spp. occurred in high concentrations (130/ml) in the mesotrophic lake. Budding bacteria of thePlanctomyces-Pasteuria group were most numerous in the eutrophic habitats where as many as 240/ml were counted; their proportion to total heterotrophs remained relatively constant regardless of trophic state, however. A similar pattern was observed withProsthecobacter spp.
Collapse
Affiliation(s)
- J T Staley
- Department of Microbiology and Immunology, University of Washington, Seattle, Wa
| | | | | |
Collapse
|
8
|
Caldwell DE, Overbeck J. The planktonic microflora of lakes. CRC CRITICAL REVIEWS IN MICROBIOLOGY 1977; 5:305-70. [PMID: 407052 DOI: 10.3109/10408417709102809] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Staley JT, Bont JA, Jonge K. Prosthecobacter fusiformis nov. gen. et sp., the fusiform caulobacter. Antonie Van Leeuwenhoek 1976; 42:333-42. [PMID: 1086646 DOI: 10.1007/bf00394132] [Citation(s) in RCA: 40] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Four strains of heterotrophic, fusiform caulobacters have been isolated from freshwater sources. A single prostheca extends from one pole of mature cells, and cells attach to various substrata by means of a holdfast located at the distal tip of the appendage. Thus, superficially these bacteria bear a strong resemblance to bacteria in the genus Caulobacter. However, unlike Caulobacter these bacteria do not exhibit a dimorphic life cycle of motile, non-stalked daughter cells and immotile, stalked mother cells. Instead both mother and daughter cells are immotile, and at the time of cell separation the daughter cells are essentially identical mirror-image replicas of the mother cell. In addition, the prosthecae of these fusiform caulobacters do not have crossbands, they are somewhat wider than the stalks of Caulobacter and the pseudostalks of Asticcacaulis, and they terminate in a bulbous tip. The deoxyribonucleic acid (DNA) base composition ranges from 54.6-60.1, well below the 62-67 range for the genus Caulobacter. Based upon these and other differences a new genus and species, Prosthecobacter fusiformis, is proposed for the fusiform caulobacters.
Collapse
|