1
|
Sharker MR, Sukhan ZP, Kim SC, Lee WK, Kho KH. Molecular Identification, Characterization, and Expression Analysis of a Gonadotropin-Releasing Hormone Receptor (GnRH-R) in Pacific Abalone, Haliotis discus hannai. Molecules 2020; 25:molecules25122733. [PMID: 32545589 PMCID: PMC7355911 DOI: 10.3390/molecules25122733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
A full-length cDNA sequence encoding a GnRH receptor was cloned from the pleuropedal ganglion of the Pacific abalone, Haliotis discus hannai. The cloned sequence is 1499-bp in length encoding a protein of 460 amino acid residues, with a molecular mass of 52.22 kDa and an isoelectric point (pI) of 9.57. The architecture of HdhGnRH-R gene exhibited key features of G protein-coupled receptors (GPCRs), including seven membrane spanning domains, putative N-linked glycosylation motifs, and phosphorylation sites of serine and threonine residues. It shared 63%, 52%, and 30% sequence identities with Octopus vulgaris, Limulus polyphemus, and Mizuhopecten yessoensis GnRH-R II sequences, respectively. Phylogenetic analysis indicated that HdhGnRH-R gene was clustered with GnRH-R II of O. vulgaris and O. bimaculoides. qPCR assay demonstrated that the mRNA expression level of this receptor was significantly higher in the pleuropedal ganglion than that in any other examined tissue. Transcriptional activities of this gene in gonadal tissues were significantly higher in the ripening stage. The mRNA expression of this gene was significantly higher in pleuropedal ganglion, testis, and ovary at higher effective accumulative temperature (1000 °C). In situ hybridization revealed that HdhGnRH-R mRNA was expressed in neurosecretory cells of pleuropedal ganglion. Our results suggest that HdhGnRH-R gene synthesized in the neural ganglia might be involved in the control of gonadal maturation and gametogenesis of H. discus hannai. This is the first report of GnRH-R in H. discus hannai and the results may contribute to further studies of GPCRs evolution or may useful for the development of aquaculture method of this abalone species.
Collapse
Affiliation(s)
| | | | | | | | - Kang Hee Kho
- Correspondence: ; Tel.: +82-616-597-168; Fax: +82-616-597-169
| |
Collapse
|
2
|
Dufour S, Quérat B, Tostivint H, Pasqualini C, Vaudry H, Rousseau K. Origin and Evolution of the Neuroendocrine Control of Reproduction in Vertebrates, With Special Focus on Genome and Gene Duplications. Physiol Rev 2019; 100:869-943. [PMID: 31625459 DOI: 10.1152/physrev.00009.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In humans, as in the other mammals, the neuroendocrine control of reproduction is ensured by the brain-pituitary gonadotropic axis. Multiple internal and environmental cues are integrated via brain neuronal networks, ultimately leading to the modulation of the activity of gonadotropin-releasing hormone (GnRH) neurons. The decapeptide GnRH is released into the hypothalamic-hypophysial portal blood system and stimulates the production of pituitary glycoprotein hormones, the two gonadotropins luteinizing hormone and follicle-stimulating hormone. A novel actor, the neuropeptide kisspeptin, acting upstream of GnRH, has attracted increasing attention in recent years. Other neuropeptides, such as gonadotropin-inhibiting hormone/RF-amide related peptide, and other members of the RF-amide peptide superfamily, as well as various nonpeptidic neuromediators such as dopamine and serotonin also provide a large panel of stimulatory or inhibitory regulators. This paper addresses the origin and evolution of the vertebrate gonadotropic axis. Brain-pituitary neuroendocrine axes are typical of vertebrates, the pituitary gland, mediator and amplifier of brain control on peripheral organs, being a vertebrate innovation. The paper reviews, from molecular and functional perspectives, the evolution across vertebrate radiation of some key actors of the vertebrate neuroendocrine control of reproduction and traces back their origin along the vertebrate lineage and in other metazoa before the emergence of vertebrates. A focus is given on how gene duplications, resulting from either local events or from whole genome duplication events, and followed by paralogous gene loss or conservation, might have shaped the evolutionary scenarios of current families of key actors of the gonadotropic axis.
Collapse
Affiliation(s)
- Sylvie Dufour
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Bruno Quérat
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Catherine Pasqualini
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hubert Vaudry
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Karine Rousseau
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| |
Collapse
|
3
|
Cancer of Reproductive System: Receptors and Targeting Strategies. TARGETED INTRACELLULAR DRUG DELIVERY BY RECEPTOR MEDIATED ENDOCYTOSIS 2019. [PMCID: PMC7122620 DOI: 10.1007/978-3-030-29168-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carcinogenesis in the different organs of the reproductive system, particularly, prostate, ovarian, and cervical tissues, involves aberrant expression of various physiological receptors belonging to different superfamilies. This chapter provides insights into the physiological receptors that are associated with the genesis, progression, metastasis, management, as well as the prognosis of the cancers of the male and female reproductive systems. It also highlights the structural and binding characteristics of the highly predominant receptors, namely, androgen, estrogen, progesterone, and gonadotropin-releasing hormone (GnRH) receptors, which are overexpressed in these cancers and discusses various strategies to target them.
Collapse
|
4
|
Targeting luteinizing hormone-releasing hormone: A potential therapeutics to treat gynecological and other cancers. J Control Release 2018; 269:277-301. [DOI: 10.1016/j.jconrel.2016.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 01/05/2023]
|
5
|
Norwitz ER, Jeong KH, Chin WW. Molecular Mechanisms of Gonadotropin-Releasing Hormone Receptor Gene Regulation. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155769900600402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Errol R. Norwitz
- Division of Maternal-Fetal Medicine, Department of Obstetries & Gynecology, and Division of Molecular Genetics. Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - William W. Chin
- Division of Maternal-Fetal Medicine, Department of Obstetries & Gynecology, and Division of Molecular Genetics. Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Allen-Worthington K, Xie J, Brown JL, Edmunson AM, Dowling A, Navratil AM, Scavelli K, Yoon H, Kim DG, Bynoe MS, Clarke I, Roberson MS. The F0F1 ATP Synthase Complex Localizes to Membrane Rafts in Gonadotrope Cells. Mol Endocrinol 2016; 30:996-1011. [PMID: 27482602 PMCID: PMC5414608 DOI: 10.1210/me.2015-1324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/29/2016] [Indexed: 12/22/2022] Open
Abstract
Fertility in mammals requires appropriate communication within the hypothalamic-pituitary-gonadal axis and the GnRH receptor (GnRHR) is a central conduit for this communication. The GnRHR resides in discrete membrane rafts and raft occupancy is required for signaling by GnRH. The present studies use immunoprecipitation and mass spectrometry to define peptides present within the raft associated with the GnRHR and flotillin-1, a key raft marker. These studies revealed peptides from the F0F1 ATP synthase complex. The catalytic subunits of the F1 domain were validated by immunoprecipitation, flow cytometry, and cell surface biotinylation studies demonstrating that this complex was present at the plasma membrane associated with the GnRHR. The F1 catalytic domain faces the extracellular space and catalyzes ATP synthesis when presented with ADP in normal mouse pituitary explants and a gonadotrope cell line. Steady-state extracellular ATP accumulation was blunted by coadministration of inhibitory factor 1, limiting inorganic phosphate in the media, and by chronic stimulation of the GnRHR. Steady-state extracellular ATP accumulation was enhanced by pharmacological inhibition of ecto-nucleoside triphosphate diphosphohydrolases. Kisspeptin administration induced coincident GnRH and ATP release from the median eminence into the hypophyseal-portal vasculature in ovariectomized sheep. Elevated levels of extracellular ATP augmented GnRH-induced secretion of LH from pituitary cells in primary culture, which was blocked in media containing low inorganic phosphate supporting the importance of extracellular ATP levels to gonadotrope cell function. These studies indicate that gonadotropes have intrinsic ability to metabolize ATP in the extracellular space and extracellular ATP may serve as a modulator of GnRH-induced LH secretion.
Collapse
Affiliation(s)
- Krystal Allen-Worthington
- Department of Biomedical Sciences (K.A.-W., J.X., J.L.B., A.M.E., A.D., K.S., H.Y., M.S.R.) and Microbiology and Immunology (D.-G.K., M.S.B.), College of Veterinary Medicine, Cornell University, Ithaca, New York 14853; Department of Zoology and Physiology (A.M.N.), College of Arts and Sciences, University of Wyoming, Laramie, Wyoming 82071; and Neuroscience Program (I.C.), Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia
| | - Jianjun Xie
- Department of Biomedical Sciences (K.A.-W., J.X., J.L.B., A.M.E., A.D., K.S., H.Y., M.S.R.) and Microbiology and Immunology (D.-G.K., M.S.B.), College of Veterinary Medicine, Cornell University, Ithaca, New York 14853; Department of Zoology and Physiology (A.M.N.), College of Arts and Sciences, University of Wyoming, Laramie, Wyoming 82071; and Neuroscience Program (I.C.), Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia
| | - Jessica L Brown
- Department of Biomedical Sciences (K.A.-W., J.X., J.L.B., A.M.E., A.D., K.S., H.Y., M.S.R.) and Microbiology and Immunology (D.-G.K., M.S.B.), College of Veterinary Medicine, Cornell University, Ithaca, New York 14853; Department of Zoology and Physiology (A.M.N.), College of Arts and Sciences, University of Wyoming, Laramie, Wyoming 82071; and Neuroscience Program (I.C.), Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia
| | - Alexa M Edmunson
- Department of Biomedical Sciences (K.A.-W., J.X., J.L.B., A.M.E., A.D., K.S., H.Y., M.S.R.) and Microbiology and Immunology (D.-G.K., M.S.B.), College of Veterinary Medicine, Cornell University, Ithaca, New York 14853; Department of Zoology and Physiology (A.M.N.), College of Arts and Sciences, University of Wyoming, Laramie, Wyoming 82071; and Neuroscience Program (I.C.), Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia
| | - Abigail Dowling
- Department of Biomedical Sciences (K.A.-W., J.X., J.L.B., A.M.E., A.D., K.S., H.Y., M.S.R.) and Microbiology and Immunology (D.-G.K., M.S.B.), College of Veterinary Medicine, Cornell University, Ithaca, New York 14853; Department of Zoology and Physiology (A.M.N.), College of Arts and Sciences, University of Wyoming, Laramie, Wyoming 82071; and Neuroscience Program (I.C.), Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia
| | - Amy M Navratil
- Department of Biomedical Sciences (K.A.-W., J.X., J.L.B., A.M.E., A.D., K.S., H.Y., M.S.R.) and Microbiology and Immunology (D.-G.K., M.S.B.), College of Veterinary Medicine, Cornell University, Ithaca, New York 14853; Department of Zoology and Physiology (A.M.N.), College of Arts and Sciences, University of Wyoming, Laramie, Wyoming 82071; and Neuroscience Program (I.C.), Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia
| | - Kurt Scavelli
- Department of Biomedical Sciences (K.A.-W., J.X., J.L.B., A.M.E., A.D., K.S., H.Y., M.S.R.) and Microbiology and Immunology (D.-G.K., M.S.B.), College of Veterinary Medicine, Cornell University, Ithaca, New York 14853; Department of Zoology and Physiology (A.M.N.), College of Arts and Sciences, University of Wyoming, Laramie, Wyoming 82071; and Neuroscience Program (I.C.), Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia
| | - Hojean Yoon
- Department of Biomedical Sciences (K.A.-W., J.X., J.L.B., A.M.E., A.D., K.S., H.Y., M.S.R.) and Microbiology and Immunology (D.-G.K., M.S.B.), College of Veterinary Medicine, Cornell University, Ithaca, New York 14853; Department of Zoology and Physiology (A.M.N.), College of Arts and Sciences, University of Wyoming, Laramie, Wyoming 82071; and Neuroscience Program (I.C.), Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia
| | - Do-Geun Kim
- Department of Biomedical Sciences (K.A.-W., J.X., J.L.B., A.M.E., A.D., K.S., H.Y., M.S.R.) and Microbiology and Immunology (D.-G.K., M.S.B.), College of Veterinary Medicine, Cornell University, Ithaca, New York 14853; Department of Zoology and Physiology (A.M.N.), College of Arts and Sciences, University of Wyoming, Laramie, Wyoming 82071; and Neuroscience Program (I.C.), Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia
| | - Margaret S Bynoe
- Department of Biomedical Sciences (K.A.-W., J.X., J.L.B., A.M.E., A.D., K.S., H.Y., M.S.R.) and Microbiology and Immunology (D.-G.K., M.S.B.), College of Veterinary Medicine, Cornell University, Ithaca, New York 14853; Department of Zoology and Physiology (A.M.N.), College of Arts and Sciences, University of Wyoming, Laramie, Wyoming 82071; and Neuroscience Program (I.C.), Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia
| | - Iain Clarke
- Department of Biomedical Sciences (K.A.-W., J.X., J.L.B., A.M.E., A.D., K.S., H.Y., M.S.R.) and Microbiology and Immunology (D.-G.K., M.S.B.), College of Veterinary Medicine, Cornell University, Ithaca, New York 14853; Department of Zoology and Physiology (A.M.N.), College of Arts and Sciences, University of Wyoming, Laramie, Wyoming 82071; and Neuroscience Program (I.C.), Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia
| | - Mark S Roberson
- Department of Biomedical Sciences (K.A.-W., J.X., J.L.B., A.M.E., A.D., K.S., H.Y., M.S.R.) and Microbiology and Immunology (D.-G.K., M.S.B.), College of Veterinary Medicine, Cornell University, Ithaca, New York 14853; Department of Zoology and Physiology (A.M.N.), College of Arts and Sciences, University of Wyoming, Laramie, Wyoming 82071; and Neuroscience Program (I.C.), Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
7
|
Tello JA, Kohout T, Pineda R, Maki RA, Scott Struthers R, Millar RP. Reproductive physiology of a humanized GnRH receptor mouse model: application in evaluation of human-specific analogs. Am J Physiol Endocrinol Metab 2013; 305:E67-77. [PMID: 23632635 DOI: 10.1152/ajpendo.00624.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The human GnRH receptor (GNRHR1) has a specific set of properties with physiological and pharmacological influences not appropriately modeled in laboratory animals or cell-based systems. To address this deficiency, we have generated human GNRHR1 knock-in mice and described their reproductive phenotype. Measurement of pituitary GNRHR1 transcripts from homozygous human GNRHR1 knock-in (ki/ki) mice revealed a severe reduction (7- to 8-fold) compared with the mouse Gnrhr1 in wild-type mice. ¹²⁵I-GnRH binding assays on pituitary membrane fractions corroborated reduced human GNRHR1 protein expression in ki/ki mice, as occurs with transfection of human GNRHR1 in cell lines. Female homozygous knock-in mice displayed normal pubertal onset, indicating that a large reduction in GNRHR1 expression is sufficient for this process. However, ki/ki females exhibited periods of prolonged estrous and/or metestrous and reduced fertility. No impairment was found in reproductive maturity or adult fertility in male ki/ki mice. Interestingly, the serum LH response to GnRH challenge was reduced in both knock-in males and females, indicating a reduced GNRHR1 signaling capacity. Small molecules targeting human GPCRs usually have poor activities at homologous rodent receptors, thus limiting their use in preclinical development. Therefore, we tested a human-specific GnRH1 antagonist, NBI-42902, in our mouse model and demonstrated abrogation of a GnRH1-induced serum LH rise in ki/ki mice and an absence of effect in littermates expressing the wild-type murine receptor. This novel model provides the opportunity to study the human receptor in vivo and for screening the activity of human-specific GnRH analogs.
Collapse
Affiliation(s)
- Javier A Tello
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | |
Collapse
|
8
|
Muriach B, Cerdá-Reverter JM, Gómez A, Zanuy S, Carrillo M. Molecular characterization and central distribution of the estradiol receptor alpha (ERalpha) in the sea bass (Dicentrarchus labrax). J Chem Neuroanat 2007; 35:33-48. [PMID: 17629451 DOI: 10.1016/j.jchemneu.2007.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 05/29/2007] [Accepted: 05/29/2007] [Indexed: 11/23/2022]
Abstract
Three different estrogen receptors (ERs) have been cloned and characterized in teleosts fish, i.e. ERalpha, ERbeta or ERbeta1 and ERgamma or ERbeta2. In order to study the sea bass ER subtype involved in the regulation of gonadotropin production, as well as to elucidate the possible involved neuronal pathways, we characterized the transactivation properties of the cloned sea bass ERalpha (sbERalpha) and studied its distribution in the brain and gonadotropic cells of the sea bass by in situ hybridization. The results revealed that sbERalpha transactivates promoters containing estradiol responsive elements (ERE) in a dose-response manner. The sbERalpha showed the highest affinity for 17-beta-estradiol. In situ hybridization studies demonstrated that ERalpha mRNA positive neurons are widely distributed within the sea bass brain, including the telencephalon, preoptic area, thalamus, hypothalamus, mesencephalic tectum and tegmentum and rhombencephalon. New estrogen dependent nuclei were described in all above areas. The sbERalpha was profusely expressed in the main neuroendocrine areas such as the preoptic area and hypothalamus, thus suggesting the steroidal modulation of the hypophysiotropic neurons. The presence of sbERalpha expression in the FSHbeta and LHbeta cells suggests a direct effect of estrogens in the control of gonadotropin hormone synthesis.
Collapse
Affiliation(s)
- Borja Muriach
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, CSIC, Torre de la Sal, 12595 Ribera de Cabanes, Castellón, Spain
| | | | | | | | | |
Collapse
|
9
|
Chien CH, Chen CH, Lee CYG, Chang TC, Chen RJ, Chow SN. Detection of gonadotropin-releasing hormone receptor and its mRNA in primary human epithelial ovarian cancers. Int J Gynecol Cancer 2004; 14:451-8. [PMID: 15228417 DOI: 10.1111/j.1048-891x.2004.014304.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The hypothalamic neuropeptide gonadotropin-releasing hormone (GnRH) serves a key role in regulating mammalian reproductive function. An extrapituitary role for GnRH in the normal and malignant reproductive tissues has been postulated. The purpose of our study is to demonstrate the presence and levels of GnRH receptor (RGnRH) protein and its mRNA in normal and malignant tissues of ovary. Normal human ovarian tissues (n = 13), as well as epithelial ovarian cancer specimens from stages I-IV (n = 39), were obtained from appropriate patients at operation room. Monoclonal antibodies against RGnRH were used for immunohistochemical evaluation of paraffin-embedded ovarian tissue sections by methods of streptavidin-biotin immunostaining. The molecular size and levels of RGnRH were determined by enhanced chemiluminescence-Western blot assay. The amount of RGnRH mRNA was detected by reverse transcriptase polymerase chain reaction (RT-PCR). The rate of positive immunostaining in ovarian cancers was 53.8% (21/39). The rate of positive staining in the late stage (stages III and IV) was significantly higher than that in the early stage (stages I and II). A single band of molecular weight of about 60 kDa was detected from protein extracts of ovarian cancer as well as from normal ovary. The mean values of fold increase of signal intensities of 60 kDa detected by Western blots in stages I-IV ovarian cancers were 2.39, 2.42, 2.78, and 3.62, respectively, as compared with normal ovarian tissues. The overall positive rate of Western blot analysis for ovarian cancers was 59% (23/39). The mean values of signal intensity of RT-PCR products of RGnRH mRNA in stages I-IV were 2.24, 2.58, 3.10, and 3.20, respectively. The positive rate of overexpression of RGnRH mRNA in ovarian cancer was 70% (21/30). The differences of mean values of signal intensities of Western blot staining (2.41 versus 2.85) as well as RT-PCR products (2.40 versus 3.11) between the early stage and the late stage of ovarian cancers were statistically nonsignificant. Mechanism of autocrine regulation of tumor growth in human epithelial ovarian cancer can be explained by the coexistence of GnRH, RGnRH, and its mRNA, according to our own and other studies. The level of RGnRH expressed by ovarian cancer might be used for targeting chemotherapeutic agents to those patients who harbor RGnRH-positive tumors.
Collapse
Affiliation(s)
- C-H Chien
- Department and Institute of Biochemistry, National Yang-Ming University, Taiwan
| | | | | | | | | | | |
Collapse
|
10
|
González-Martínez D, Madigou T, Mañanos E, Cerdá-Reverter JM, Zanuy S, Kah O, Muñoz-Cueto JA. Cloning and Expression of Gonadotropin-Releasing Hormone Receptor in the Brain and Pituitary of the European Sea Bass: An In Situ Hybridization Study1. Biol Reprod 2004; 70:1380-91. [PMID: 14724132 DOI: 10.1095/biolreprod.103.022624] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
A full-length cDNA encoding a GnRH receptor (GnRH-R) has been obtained from the pituitary of the European sea bass, Dicentrarchus labrax. The complete cDNA is 1814 base pairs (bp) in length and encodes a protein of 416 amino acids. The 5' UTR and 3' UTR are 239 bp and 324 bp in size, respectively. The expression sites of this GnRH-R were studied in the brain and pituitary of sea bass by means of in situ hybridization. A quantitative analysis of the expression of the GnRH-R gene along the reproductive cycle was also performed. The GnRH-R brain expression was especially relevant in the ventral telencephalon and rostral preoptic area. Some GnRH-R messenger-expressing cells were also evident in the dorsal telencephalon, caudal preoptic area, ventral thalamus, and periventricular hypothalamus. A conspicuous and specific GnRH-R expression was detected in the pineal gland. The highest expression of the GnRH-R gene was observed in the proximal pars distalis of the pituitary. This expression was evident in all LH cells and some FSH cells but not in somatotrophs. In the pituitary, the quantitative analysis revealed a higher expression of GnRH-R gene during late vitellogenesis in comparison with maturation, spawning, and postspawning/resting periods. However, in the brain, the highest GnRH-R expression was evident at spawning or postspawning/ resting periods. These results suggest that the expression of this GnRH-R is regulated in a different manner in the brain and the pituitary of sea bass.
Collapse
Affiliation(s)
- David González-Martínez
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Spain
| | | | | | | | | | | | | |
Collapse
|
11
|
Layman LC, McDonough PG, Cohen DP, Maddox M, Tho SP, Reindollar RH. Familial gonadotropin-releasing hormone resistance and hypogonadotropic hypogonadism in a family with multiple affected individuals. Fertil Steril 2001; 75:1148-55. [PMID: 11384641 DOI: 10.1016/s0015-0282(01)01782-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To characterize the phenotype of idiopathic hypogonadotropic hypogonadism due to compound heterozygous GnRHR gene mutations (Arg262Gln/Tyr284Cys). DESIGN Retrospective review. SETTING Tertiary medical center. PATIENT(S) Family containing four siblings (three female and one male) with complete idiopathic hypogonadotropic hypogonadism. INTERVENTION(S) Baseline and stimulated laboratory studies. One patient received GnRH treatment and one received human menopausal gonadotropins. MAIN OUTCOME MEASURE(S) Clinical phenotype vs. genotype is assessed by endocrine studies, karyotype, pedigree, and review of pathology slides of ovarian neoplasm. RESULT(S) With GnRH stimulation, two patients with idiopathic hypogonadotropic hypogonadism had maximum LH < 10 mIU/mL, and two others had peak LH > 10 mIU/mL. With repeated GnRH stimulation 24 hours later, gonadotropin levels in all patients were increased. Stimulation of thyroid-releasing hormone and tests for insulin-induced hypoglycemia were normal. One affected patient did not ovulate after GnRH treatment, but her sister ovulated with gonadotropin treatment. Another affected sibling had bilateral oophorectomy for seromucinous cystadenomas, and her hypogonadotropic state remained after castration. The man with idiopathic hypogonadotropic hypogonadism and his unaffected brother had a ring chromosome 21. CONCLUSION(S) All patients with complete idiopathic hypogonadotropic hypogonadism had the same GnRHR mutations, but clinical presentations and endocrinologic responses were heterogeneous. Gonadotropin levels remained low in patients with idiopathic hypogonadotropic hypogonadism after castration, and ring chromosome 21 was present, suggesting that sequences from this chromosome could affect the idiopathic hypogonadotropic hypogonadism phenotype.
Collapse
Affiliation(s)
- L C Layman
- Department of Obstetrics and Gynecology, The Medical College of Georgia, Augusta, Georgia 30912-3360, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Three distinct types of GnRH receptor characterized in the bullfrog. Proc Natl Acad Sci U S A 2001. [PMID: 11120886 PMCID: PMC14595 DOI: 10.1073/pnas.011508498] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It has been proposed recently that two types of GnRH receptors (GnRHR) exist in a particular species. Here we present data demonstrating that at least three types of GnRHR are expressed in a single diploid species, the bullfrog. Three different cDNAs, encoding distinct types of bullfrog GnRHR (bfGnRHR-1, bfGnRHR-2, and bfGnRHR-3), were isolated from pituitary and hindbrain of the bullfrog. BfGnRHR-1 mRNA was expressed predominantly in pituitary, whereas bfGnRHR-2 and -3 mRNAs were expressed in brain. The bfGnRHR-1, bfGnRHR-2, and bfGnRHR-3 proteins have an amino acid identity of approximately 30% to approximately 35% with mammalian GnRHRs and approximately 40% to approximately 50% with nonmammalian GnRHRs. Interestingly, bfGnRHR-2 has an 85% amino acid homology with Xenopus GnRHR. Less than 53% amino acid identity was observed among the three bfGnRHRs. All isolated cDNAs encode functional receptors because their transient expression in COS-7 cells resulted in a ligand-dependent increase in inositol phosphate production. Notably, all three receptors exhibited a differential ligand selectivity. For all receptors, cGnRH-II has a higher potency than mGnRH. In addition, salmon GnRH also has a strikingly high potency to stimulate all three receptors. In conclusion, we demonstrated the presence of three GnRHRs in the bullfrog. Their expression in pituitary and brain suggests that bfGnRHRs play an important role in the regulation of reproductive functions in the bullfrog.
Collapse
|
13
|
Wang L, Bogerd J, Choi HS, Seong JY, Soh JM, Chun SY, Blomenröhr M, Troskie BE, Millar RP, Yu WH, McCann SM, Kwon HB. Three distinct types of GnRH receptor characterized in the bullfrog. Proc Natl Acad Sci U S A 2001; 98:361-6. [PMID: 11120886 PMCID: PMC14595 DOI: 10.1073/pnas.98.1.361] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been proposed recently that two types of GnRH receptors (GnRHR) exist in a particular species. Here we present data demonstrating that at least three types of GnRHR are expressed in a single diploid species, the bullfrog. Three different cDNAs, encoding distinct types of bullfrog GnRHR (bfGnRHR-1, bfGnRHR-2, and bfGnRHR-3), were isolated from pituitary and hindbrain of the bullfrog. BfGnRHR-1 mRNA was expressed predominantly in pituitary, whereas bfGnRHR-2 and -3 mRNAs were expressed in brain. The bfGnRHR-1, bfGnRHR-2, and bfGnRHR-3 proteins have an amino acid identity of approximately 30% to approximately 35% with mammalian GnRHRs and approximately 40% to approximately 50% with nonmammalian GnRHRs. Interestingly, bfGnRHR-2 has an 85% amino acid homology with Xenopus GnRHR. Less than 53% amino acid identity was observed among the three bfGnRHRs. All isolated cDNAs encode functional receptors because their transient expression in COS-7 cells resulted in a ligand-dependent increase in inositol phosphate production. Notably, all three receptors exhibited a differential ligand selectivity. For all receptors, cGnRH-II has a higher potency than mGnRH. In addition, salmon GnRH also has a strikingly high potency to stimulate all three receptors. In conclusion, we demonstrated the presence of three GnRHRs in the bullfrog. Their expression in pituitary and brain suggests that bfGnRHRs play an important role in the regulation of reproductive functions in the bullfrog.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Southern
- COS Cells
- Cloning, Molecular
- DNA Primers
- DNA, Complementary/genetics
- Gene Expression Regulation
- Humans
- Inositol Phosphates/metabolism
- Ligands
- Molecular Sequence Data
- Pituitary Gland/chemistry
- Protein Isoforms/chemistry
- Protein Isoforms/classification
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rana catesbeiana/genetics
- Receptors, LHRH/chemistry
- Receptors, LHRH/classification
- Receptors, LHRH/genetics
- Receptors, LHRH/metabolism
- Rhombencephalon/chemistry
- Sequence Alignment
- Sequence Homology, Amino Acid
- Substrate Specificity
- Transfection
Collapse
Affiliation(s)
- L Wang
- Hormone Research Center and Department of Biology, Chonnam National University, Kwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yahalom D, Rahimipour S, Koch Y, Ben-Aroya N, Fridkin M. Structure-activity studies of reduced-size gonadotropin-releasing hormone agonists derived from the sequence of an endothelin antagonist. J Med Chem 2000; 43:2824-30. [PMID: 10956190 DOI: 10.1021/jm990432o] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have previously determined that Ac-D-Trp-Leu-Asp-Ile-Ile-Trp (peptide I), an endothelin antagonist, binds specifically (Ki = 1.9 microM) to the rat pituitary gonadotropin-releasing hormone (GnRH) receptor. Moreover, peptide I exhibits a GnRH agonistic activity, mediated directly by the GnRH receptor. We now report structure-activity studies of peptide I in respect to its interactions with the GnRH receptor. Our studies suggest that the bioactive conformation of peptide I, recognized by the GnRH receptor, is of a cyclic nature. Thus cyclic analogues of peptide I exhibit higher affinity to the GnRH receptor and increased agonistic potencies as compared to peptide I itself. A linear peptide, Ile-Ile-Trp-D-Trp-Leu-Asp, which presumably forms a similar cyclic conformation, was also shown to be a GnRH agonist. Intraperitoneal administration of Ac-Ile-Ile-Trp-D-Trp-Leu-Cys-OH (Ki = 0.32 microM), one of the cyclic hexapeptides that we have synthesized, to rats induces secretion of luteinizing hormone (LH) with a potency which is only 1 order of magnitude less than that of GnRH itself. Moreover, plasma levels of LH remained elevated for a longer period of time following the administration of the cyclic hexapeptide. This novel class of GnRH agonists may prove useful in the development of new therapeutics.
Collapse
Affiliation(s)
- D Yahalom
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
15
|
Yahalom D, Rahimipour S, Koch Y, Ben-Aroya N, Fridkin M. Design and synthesis of potent hexapeptide and heptapeptide gonadotropin-releasing hormone antagonists by truncation of a decapeptide analogue sequence. J Med Chem 2000; 43:2831-6. [PMID: 10956191 DOI: 10.1021/jm990433g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel strategy for designing reduced-size analogues of the decapeptide gonadotropin-releasing hormone (GnRH) was developed. As opposed to previous attempts to delete residues from either of the peptide's termini, our approach is based upon the known importance of both C- and N-terminals of GnRH analogues for receptor recognition, whereas the central part of the molecule is replaced by a short spacer. The present truncation strategy was successful for generation of reduced-size hexapeptide and heptapeptide antagonists possessing potent antagonistic capacity. The same methodology was not suitable for the generation of reduced-size agonists, suggesting different conformational characteristics for GnRH agonists and antagonists. A heptapeptide antagonist designed by this method was shown to inhibit serum levels of luteinizing hormone in castrated rats in vivo. Structure-activity studies suggested that the structural preferences for GnRH receptor recognition are similar to those reported for decapeptide antagonists. Our studies resulted in a heptapeptide GnRH antagonist (Ac-D-Nal2-D-Cpa-D-Pal-Gly-Arg-Pro-D-Ala-NH2) with high receptor binding affinity (IC50 = 7 nM), as compared to that of GnRH itself (IC50 = 2 nM). The highest affinity of a hexapeptide antagonist that we have synthesized was somewhat lower (IC50 = 45 nM).
Collapse
Affiliation(s)
- D Yahalom
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
16
|
Abstract
In addition to its hypophysiotropic action, gonadotropin-releasing hormone (GnRH) can modify activity in extrapituitary organs and peripheral tumors. GnRH analogs are the preferred treatment for advanced and even metastatic or recurring carcinomas in vivo and in vitro. Hormone-responsive tumors undergo apoptosis with the appropriate stimulus; GnRH-induced tumor growth arrest may result from stimulated apoptotic cell death. The sensitivity of tumors and normal tissue to GnRH is strongly associated with the possession of receptors for GnRH as well as other hormonal control. Despite the lack of a precise apoptotic signaling cascade through GnRH receptors, biochemical events observed within a plasma membrane appear to constitute the most convincing evidence that the membrane event is primarily stimulated during cell activation by GnRH. GnRH receptors in tumors differ from those in pituitary gonadotrophs in some aspects, in particular with regard to the transmembrane signaling cascade. The intramembranous phenomena that occur independently of the contribution of other organelles upon tumoral GnRH receptor engagement include (i) activation of phosphotyrosine phosphatase and loss of phosphotyrosine from the endogenous membrane protein and (ii) phosphoinositide and perhaps sphingomyelin cleavage producing lipid-originated second messengers. GnRH has also been demonstrated to increase Fas ligand expression within plasma membrane, which is known to promote apoptotic cell death through attack on Fas-positive cells within tumors. The Fas-Fas ligand complex might, at least in part, account for the antiproliferative action of the hormone. An understanding of the relationship between the extracellular (hormonal) stimuli that leads to cell death and the intracellular events regulating growth arrest on GnRH action may fundamentally help clarify the therapeutic approach to all hormone-dependent carcinomas that respond to stimuli that lead to apoptosis. In this chapter, we review the recent literature and the results of our studies on GnRH-induced membrane events and summarize what is currently known about this promising antiproliferative function.
Collapse
Affiliation(s)
- A Imai
- Department of Obstetrics and Gynecology, Gifu University School of Medicine, Japan
| | | |
Collapse
|
17
|
Koerber SC, Rizo J, Struthers RS, Rivier JE. Consensus bioactive conformation of cyclic GnRH antagonists defined by NMR and molecular modeling. J Med Chem 2000; 43:819-28. [PMID: 10715150 DOI: 10.1021/jm990118u] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Little is known of the conformation of peptide hormones as they interact with their receptors for a number of reasons: peptide hormones are notoriously flexible in solution, their receptors are particularly complex, and there is strong evidence that receptor-ligand interaction leading to activation is a dynamic process. Insights into the active conformation of the decapeptide gonadotropin releasing hormone (GnRH) have been obtained previously from the solution structures of four constrained GnRH antagonists ¿cyclo(1-10)[Ac-Delta(3)-Pro(1),DCpa(2),DTrp(3,6),NMeLeu+ ++(7), betaAla(10)]GnRH (1), cyclo(4-10)[Ac-Delta(3)Pro(1),DFpa(2),DTrp(3), Asp(4),DNal(6),Dpr(10)]GnRH (2), dicyclo(4-10/5-8)[Ac-DNal(1), DCpa(2),DTrp(3),Asp(4),Glu(5),DArg(6),Lys(8),Dpr (10)]GnRH (3), and dicyclo(4-10/5-5'-8)[Ac-DNal(1),DCpa(2),DPal(3), Asp(4),Glu(5)(Gly), DArg(6),Dbu(8),Dpr(10)]GnRH (4)¿. However, the precise location of the N-terminal tripeptide in the highly potent (K(i) < 0.4 nM) 2-4 remained unclear due to the lack of constraints in this region. The NMR structure of the newly discovered and potent (K(i) = 0.24 nM) dicyclo(1-1'-5/4-10)[Ac-Glu(1)(Gly),DCpa(2),DTrp(3),As p(4),Dbu(5), DNal(6),Dpr(10)]GnRH (5) now allows the definition of the conformation of this region. A combined computational analysis (consensus forcing) of compounds 2-5, designed to explore the common conformations available to them that are simultaneously consistent with the NMR data corresponding to each compound, leads to a consensus structural model for the GnRH pharmacophore. This model shares some common features with the structure of the nonpeptidic GnRH mimetic T-98475. In the course of that comparative study, two additional contact points to those proposed by the authors are identified, suggesting that this model has predictive value.
Collapse
Affiliation(s)
- S C Koerber
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
18
|
Abstract
Patients with hypogonadotropic hypogonadism (HH) present with delayed puberty, infertility, and low serum gonadotropins. The molecular basis for most cases of HH is unknown, but single gene mutations have been described for some hypothalamic and pituitary genes. Kallmann syndrome due to KAL gene mutations and adrenal hypoplasia congenita/HH caused by AHC gene mutations are both X-linked recessive disorders. Mutations in the gonadotropin releasing hormone receptor, leptin, and the leptin receptor cause autosomal recessive HH. In addition, isolated deficiencies of follicle stimulating hormone and luteinizing hormone in the corresponding specific beta-subunit genes and PROP1 gene mutations represent pituitary deficiency states, resulting in a phenotype of HH. Despite these remarkable advances in our understanding of human HH, the cause of approximately 90% remains unknown.
Collapse
Affiliation(s)
- L C Layman
- Department of Obstetrics & Gynecology, The University of Chicago, Chicago, Illinois, 60637, USA
| |
Collapse
|
19
|
Cohen DP, Stein EM, Li Z, Matulis CK, Ehrmann DA, Layman LC. Molecular analysis of the gonadotropin-releasing hormone receptor in patients with polycystic ovary syndrome. Fertil Steril 1999; 72:360-3. [PMID: 10439012 DOI: 10.1016/s0015-0282(99)00225-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To determine whether a mutation in the GnRH receptor gene is responsible for polycystic ovary syndrome (PCOS). DESIGN Molecular analysis of human genomic DNA. SETTING Academic research environment. PATIENT(S) Eighty patients with PCOS. INTERVENTION(S) Extraction and polymerase chain reaction (PCR) analysis of genomic DNA, confirmation of PCR products by ethidium bromide staining of agarose gels after electrophoresis, denaturing gradient gel electrophoresis of PCR products, and photography. MAIN OUTCOME MEASURE(S) Mutations in the GnRH receptor of women with PCOS. RESULT(S) Denaturing gradient gel electrophoresis revealed no mutations in the exonic sequence encoding the open reading frame of the GnRH receptor. CONCLUSION(S) A mutation in the GnRH receptor gene is unlikely to be the underlying cause of PCOS in most patients. The molecular basis of this disorder remains unknown.
Collapse
Affiliation(s)
- D P Cohen
- University of Chicago Hospital, Pritzker Medical School, Illinois 60637, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Layman LC. Mutations in human gonadotropin genes and their physiologic significance in puberty and reproduction. Fertil Steril 1999; 71:201-18. [PMID: 9988386 DOI: 10.1016/s0015-0282(98)00431-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Human gene mutations provide an opportunity to study the pathophysiology of the disease process as well as normal physiology. The purpose of the present report was to review known human gene mutations that affect gonadotropin secretion. DESIGN A retrospective analysis of studies of human gene mutations that affect hypothalamic, pituitary, and gonadal function was conducted. RESULT(S) Mutations have been identified for at least three genes that cause inherited hypogonadotropic hypogonadism. In addition, gene mutations for the beta-subunits of FSH and LH have been characterized. Both activating and inactivating mutations have been identified for the gonadotropin receptor genes. CONCLUSION(S) The identification of human gene mutations has furthered our understanding of the normal processes of pubertal development and fertility.
Collapse
Affiliation(s)
- L C Layman
- Department of Obstetrics and Gynecology, The University of Chicago, Illinois 60637, USA.
| |
Collapse
|
21
|
Layman LC, Cohen DP, Jin M, Xie J, Li Z, Reindollar RH, Bolbolan S, Bick DP, Sherins RR, Duck LW, Musgrove LC, Sellers JC, Neill JD. Mutations in gonadotropin-releasing hormone receptor gene cause hypogonadotropic hypogonadism. Nat Genet 1998; 18:14-5. [PMID: 9425890 DOI: 10.1038/ng0198-14] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
Arora KK, Cheng Z, Catt KJ. Mutations of the conserved DRS motif in the second intracellular loop of the gonadotropin-releasing hormone receptor affect expression, activation, and internalization. Mol Endocrinol 1997; 11:1203-12. [PMID: 9259312 DOI: 10.1210/mend.11.9.9968] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The GnRH receptor is an unusual member of the G protein-coupled receptor (GPCR) superfamily with several unique features. One of these is a variant of the conserved DRY motif that is located at the junction of the third transmembrane domain and the second intracellular (2i) loop of most GPCRs. In the GnRH receptor, the Tyr residue of the conserved triplet is replaced by Ser, giving a DRS sequence. The aspartate and arginine residues of the triplet are highly conserved in almost all GPCRs. The functional importance of these residues was evaluated in wild type and mutant GnRH receptors expressed in COS-7 cells. Mutants in which Asp138 was replaced by Asn or Glu were poorly expressed, but showed significantly increased internalization and exhibited augmented inositol phosphate generation to maximal agonist stimulation compared with the wild type receptor. In contrast, receptors in which Arg139 was substituted with Gln, Ala, or Ser showed reduced internalization, and the GnRH-induced inositol phosphate response for the Arg139Gln mutant was significantly impaired in proportion to its low expression level. Replacing Ser140 with Ala affected neither internalization nor signal transduction. The role of the polar amino acids at the C terminus of the 2i loop was evaluated in two additional mutants (Ser151Ala, Ser153Ala, and Ser151Ala, Ser153Ala, Lys154Gln, Glu156Gln). Both of these mutants exhibited agonist-induced inositol phosphate responses similar to that of the wild type receptor, but showed increased receptor internalization. This mutational analysis indicates that the conserved Asp and Arg residues in the DRY/S triplet make important contributions to the structural integrity of the receptor and influence receptor expression, agonist-induced activation, and internalization.
Collapse
Affiliation(s)
- K K Arora
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
23
|
Sealfon SC, Weinstein H, Millar RP. Molecular mechanisms of ligand interaction with the gonadotropin-releasing hormone receptor. Endocr Rev 1997; 18:180-205. [PMID: 9101136 DOI: 10.1210/edrv.18.2.0295] [Citation(s) in RCA: 248] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- S C Sealfon
- Fishberg Research Center in Neurobiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
24
|
Neill JD, Sellers JC, Musgrove LC, Duck LW. Epitope-tagged gonadotropin-releasing hormone receptors heterologously-expressed in mammalian (COS-1) and insect (Sf9) cells. Mol Cell Endocrinol 1997; 127:143-54. [PMID: 9099910 DOI: 10.1016/s0303-7207(96)04003-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The molecular cloning and nucleotide sequencing of the gonadotropin-releasing hormone (GnRH) receptor represented an enhanced step in the experimental effort to understand this key molecule in the reproductive process at a cell and molecular level. A subsequent step in this broad effort is heterologous expression of the receptor in model cell systems for studies of signal transduction and desensitization, processes that may require immunologic detection of the receptor. Therefore, the GnRH receptor was tagged at its N-terminus using recombinant DNA procedures with the HA-1 epitope that is bound by a monoclonal antibody (12CA5). COS-1 cells expressing this receptor bound [(125)I]D-Ala6-desGly10-GnRH ethylamide (GnRH-A) with the expected high affinity (IC(50) = 0.47 nM), and were immunocytochemically stained by the 12CA5 antibody. Signal transduction was demonstrated by GnRH-induced [(3)H]inositol phosphate accumulation in receptor-expressing COS-1 cells. Western blotting of COS-1 cell membranes expressing the receptor revealed protein bands at 67, 57, and 32 kDa. Immunoprecipitation occurred when the solubilized receptor from COS-1 cell membranes was reacted with 12CA5 antibody and anti-mouse IgG Sepharose, and the presence of the receptor demonstrated either by its binding of [(125)I]GnRH-A or by its detection on Western blots. Desensitization of inositol 1,4,5-trisphosphate (IP(3)) production by N-epitope-tagged GnRH receptor expressing COS-1 cells was evoked by a five min GnRH pretreatment; [(32)P]i labeling of such cells during desensitization followed by immunoprecipitation of the N-epitope-tagged receptor was not associated with receptor phosphorylation. Finally, the epitope tagged receptor was expressed in the high-yield baculovirus/insect Sf9 cell system: the membrane receptor bound [(125)I]GnRH-A with slightly lowered affinity (IC(50) = 1.4 nM), and in Western blots yielded protein bands of 32, 56/57, 69, and 120/140 kDa. The development and validation of these heterologous systems will permit the study of several GnRH receptor-mediated processes that are poorly understood.
Collapse
Affiliation(s)
- J D Neill
- Department of Physiology and Biophysics, School of Medicine, University of Alabama at Birmingham, 35294, USA.
| | | | | | | |
Collapse
|
25
|
[12] Cloning and site-directed mutagenesis studies of gonadotropin-releasing hormone receptor. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1043-9471(96)80048-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|