1
|
Seelig B, Chen IA. Intellectual frameworks to understand complex biochemical systems at the origin of life. Nat Chem 2025; 17:11-19. [PMID: 39762573 DOI: 10.1038/s41557-024-01698-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
Understanding the emergence of complex biochemical systems, such as protein translation, is a great challenge. Although synthetic approaches can provide insight into the potential early stages of life, they do not address the equally important question of why the complex systems of life would have evolved. In particular, the intricacies of the mechanisms governing the transfer of information from nucleic acid sequences to proteins make it difficult to imagine how coded protein synthesis could have emerged from a prebiotic soup. Here we discuss the use of intellectual frameworks in studying the emergence of life. We discuss how one such framework, namely the RNA world theory, has spurred research, and provide an overview of its limitations. We suggest that the emergence of coded protein synthesis could be broken into experimentally tractable problems by treating it as a molecular bricolage-a complex system integrating many different parts, each of which originally evolved for uses unrelated to its modern function-to promote a concrete understanding of its origin.
Collapse
Affiliation(s)
- Burckhard Seelig
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA.
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA.
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Martínez Giménez JA, Tabares Seisdedos R. A Cofactor-Based Mechanism for the Origin of the Genetic Code. ORIGINS LIFE EVOL B 2022; 52:149-163. [PMID: 36071304 DOI: 10.1007/s11084-022-09628-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022]
Abstract
The origin of the genetic code is probably the central problem of the studies on the origin of life. The key question to answer is the molecular mechanism that allows the association of the amino acids with their triplet codons. We proposed that the codon-anticodon duplex located in the acceptor stem of primitive tRNAs would facilitate the chemical reactions required to synthesize cognate amino acids from simple amino acids (glycine, valine, and aspartic acid) linked to the 3' acceptor end. In our view, various nucleotide-A-derived cofactors (with reactive chemical groups) may be attached to the codon-anticodon duplex, which allows group-transferring reactions from cofactors to simple amino acids, thereby producing the final amino acid. The nucleotide-A-derived cofactors could be incorporated into the RNA duplex (helix) by docking Adenosine (cofactor) into the minor groove via an interaction similar to the A-minor motif, forming a base triple between Adenosine and one complementary base pair of the duplex. Furthermore, we propose that this codon-anticodon duplex could initially catalyze a self-aminoacylation reaction with a simple amino acid. Therefore, the sequence of bases in the codon-anticodon duplex would determine the reactions that occurred during the formation of new amino acids for selective binding of nucleotide-A-derived cofactors.
Collapse
Affiliation(s)
| | - Rafael Tabares Seisdedos
- Departamento de Medicina, Facultad de Medicina de Valencia, (CIBERSAM; INCLIVA-UV), Universidad de Valencia, Av. Blasco Ibañez 17, 46010, Valencia, Spain.
| |
Collapse
|
3
|
The Bootstrap Model of Prebiotic Networks of Proteins and Nucleic Acids. Life (Basel) 2022; 12:life12050724. [PMID: 35629391 PMCID: PMC9144896 DOI: 10.3390/life12050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
It is not known how life arose from prebiotic physical chemistry. How did fruitful cell-like associations emerge from the two polymer types—informational (nucleic acids, xNAs = DNA or RNA) and functional (proteins)? Our model shows how functional networks could bootstrap from random sequence-independent initial states. For proteins, we adopt the foldamer hypothesis: through persistent nonequilibrium prebiotic syntheses, short random peptides fold and catalyze the elongation of others. The xNAs enter through random binding to the peptides, and all chains can mutate. Chains grow inside colloids that split when they’re large, coupling faster growth speeds to bigger populations. Random and useless at first, these folding and binding events grow protein—xNA networks that resemble today’s protein–protein networks.
Collapse
|
4
|
Martínez-Giménez JA, Tabares-Seisdedos R. Possible Ancestral Functions of the Genetic and RNA Operational Precodes and the Origin of the Genetic System. ORIGINS LIFE EVOL B 2021; 51:167-183. [PMID: 34097191 DOI: 10.1007/s11084-021-09610-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/17/2021] [Indexed: 11/24/2022]
Abstract
The origin of genetic systems is the central problem in the study of the origin of life for which various explanatory hypotheses have been presented. One model suggests that both ancestral transfer ribonucleic acid (tRNA) molecules and primitive ribosomes were originally involved in RNA replication (Campbell 1991). According to this model the early tRNA molecules catalyzed their own self-loading with a trinucleotide complementary to their anticodon triplet, while the primordial ribosome (protoribosome) catalyzed the transfer of these terminal trinucleotides from one tRNA to another tRNA harboring the growing RNA polymer at the 3´-end.Here we present the notion that the anticodon-codon-like pairs presumably located in the acceptor stem of primordial tRNAs (Rodin et al. 1996) (thus being and remaining, after the code and translation origins, the major contributor to the RNA operational code (Schimmel et al. 1993)) might have originally been used for RNA replication rather than translation; these anticodon and acceptor stem triplets would have been involved in accurately loading the 3'-end of tRNAs with a trinucleotide complementary to their anticodon triplet, thus allowing the accurate repair of tRNAs for their use by the protoribosome during RNA replication.We propose that tRNAs could have catalyzed their own trinucleotide self-loading by forming catalytic tRNA dimers which would have had polymerase activity. Therefore, the loading mechanism and its evolution may have been a basic step in the emergence of new genetic mechanisms such as genetic translation. The evolutionary implications of this proposed loading mechanism are also discussed.
Collapse
Affiliation(s)
| | - Rafael Tabares-Seisdedos
- Departamento de Medicina, Facultad de Medicina de Valencia, Universidad de Valencia, Av. Blasco Ibañez 17, 46010, Valencia, Spain.
| |
Collapse
|
5
|
The protein invasion: a broad review on the origin of the translational system. J Mol Evol 2013; 77:185-96. [PMID: 24145863 DOI: 10.1007/s00239-013-9592-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/12/2013] [Indexed: 12/25/2022]
Abstract
Translation, coded peptide synthesis, arguably exists at the heart of modern cellular life. By orchestrating an incredibly complex interaction between tRNAs, mRNAs, aaRSs, the ribosome, and numerous other small molecules, the translational system allows the interpretation of data in the form of DNA to create massively complex proteins which control and enact almost every cellular function. A natural question then, is how did this system evolve? Here we present a broad review of the existing theories of the last two decades on the origin of the translational system. We attempt to synthesize the wide variety of ideas as well as organize them into modular components, addressing the evolution of the peptide-RNA interaction, tRNA, mRNA, the ribosome, and the first proteins separately. We hope to provide both a comprehensive overview of the literature as well as a framework for future discussions and novel theories.
Collapse
|
6
|
Rodin AS, Szathmáry E, Rodin SN. On origin of genetic code and tRNA before translation. Biol Direct 2011; 6:14. [PMID: 21342520 PMCID: PMC3050877 DOI: 10.1186/1745-6150-6-14] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 02/22/2011] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Synthesis of proteins is based on the genetic code - a nearly universal assignment of codons to amino acids (aas). A major challenge to the understanding of the origins of this assignment is the archetypal "key-lock vs. frozen accident" dilemma. Here we re-examine this dilemma in light of 1) the fundamental veto on "foresight evolution", 2) modular structures of tRNAs and aminoacyl-tRNA synthetases, and 3) the updated library of aa-binding sites in RNA aptamers successfully selected in vitro for eight amino acids. RESULTS The aa-binding sites of arginine, isoleucine and tyrosine contain both their cognate triplets, anticodons and codons. We have noticed that these cases might be associated with palindrome-dinucleotides. For example, one-base shift to the left brings arginine codons CGN, with CG at 1-2 positions, to the respective anticodons NCG, with CG at 2-3 positions. Formally, the concomitant presence of codons and anticodons is also expected in the reverse situation, with codons containing palindrome-dinucleotides at their 2-3 positions, and anticodons exhibiting them at 1-2 positions. A closer analysis reveals that, surprisingly, RNA binding sites for Arg, Ile and Tyr "prefer" (exactly as in the actual genetic code) the anticodon(2-3)/codon(1-2) tetramers to their anticodon(1-2)/codon(2-3) counterparts, despite the seemingly perfect symmetry of the latter. However, since in vitro selection of aa-specific RNA aptamers apparently had nothing to do with translation, this striking preference provides a new strong support to the notion of the genetic code emerging before translation, in response to catalytic (and possibly other) needs of ancient RNA life. Consistently with the pre-translation origin of the code, we propose here a new model of tRNA origin by the gradual, Fibonacci process-like, elongation of a tRNA molecule from a primordial coding triplet and 5'DCCA3' quadruplet (D is a base-determinator) to the eventual 76 base-long cloverleaf-shaped molecule. CONCLUSION Taken together, our findings necessarily imply that primordial tRNAs, tRNA aminoacylating ribozymes, and (later) the translation machinery in general have been co-evolving to ''fit'' the (likely already defined) genetic code, rather than the opposite way around. Coding triplets in this primal pre-translational code were likely similar to the anticodons, with second and third nucleotides being more important than the less specific first one. Later, when the code was expanding in co-evolution with the translation apparatus, the importance of 2-3 nucleotides of coding triplets "transferred" to the 1-2 nucleotides of their complements, thus distinguishing anticodons from codons. This evolutionary primacy of anticodons in genetic coding makes the hypothesis of primal stereo-chemical affinity between amino acids and cognate triplets, the hypothesis of coding coenzyme handles for amino acids, the hypothesis of tRNA-like genomic 3' tags suggesting that tRNAs originated in replication, and the hypothesis of ancient ribozymes-mediated operational code of tRNA aminoacylation not mutually contradicting but rather co-existing in harmony.
Collapse
Affiliation(s)
- Andrei S Rodin
- Human Genetics Center, School of Public Health, University of Texas, Houston, TX 77225, USA
- Collegium Budapest (Institute for Advanced Study), Szentháromság u. 2, H-1014 Budapest, Hungary
| | - Eörs Szathmáry
- Collegium Budapest (Institute for Advanced Study), Szentháromság u. 2, H-1014 Budapest, Hungary
- Parmenides Center for the Study of Thinking, Kirchplatz 1, D-82049 Munich/Pullach, Germany
- Institute of Biology, Eötvös University, 1c Pázmány Péter sétány, H-1117 Budapest, Hungary
| | - Sergei N Rodin
- Collegium Budapest (Institute for Advanced Study), Szentháromság u. 2, H-1014 Budapest, Hungary
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
7
|
Abstract
Structural analysis, supported by biochemical, mutagenesis and computational evidence, indicates that the peptidyltransferase centre of the contemporary ribosome is a universal symmetrical pocket composed solely of rRNA. This pocket seems to be a relic of the proto-ribosome, an ancient ribozyme, which was a dimeric RNA assembly formed from self-folded RNA chains of identical, similar or different sequences. This could have occurred spontaneously by gene duplication or gene fusion. This pocket-like entity was capable of autonomously catalysing various reactions, including peptide bond formation and non-coded or semi-coded amino acid polymerization. Efforts toward the structural definition of the early entity capable of genetic decoding involve the crystallization of the small ribosomal subunit of a bacterial organism harbouring a single functional rRNA operon.
Collapse
|
8
|
Smith TF, Lee JC, Gutell RR, Hartman H. The origin and evolution of the ribosome. Biol Direct 2008; 3:16. [PMID: 18430223 PMCID: PMC2386862 DOI: 10.1186/1745-6150-3-16] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 04/22/2008] [Indexed: 11/30/2022] Open
Abstract
Background The origin and early evolution of the active site of the ribosome can be elucidated through an analysis of the ribosomal proteins' taxonomic block structures and their RNA interactions. Comparison between the two subunits, exploiting the detailed three-dimensional structures of the bacterial and archaeal ribosomes, is especially informative. Results The analysis of the differences between these two sites can be summarized as follows: 1) There is no self-folding RNA segment that defines the decoding site of the small subunit; 2) there is one self-folding RNA segment encompassing the entire peptidyl transfer center of the large subunit; 3) the protein contacts with the decoding site are made by a set of universal alignable sequence blocks of the ribosomal proteins; 4) the majority of those peptides contacting the peptidyl transfer center are made by bacterial or archaeal-specific sequence blocks. Conclusion These clear distinctions between the two subunit active sites support an earlier origin for the large subunit's peptidyl transferase center (PTC) with the decoding site of the small subunit being a later addition to the ribosome. The main implications are that a single self-folding RNA, in conjunction with a few short stabilizing peptides, formed the precursor of the modern ribosomal large subunit in association with a membrane. Reviewers This article was reviewed by Jerzy Jurka, W. Ford Doolittle, Eugene Shaknovich, and George E. Fox (nominated by Jerzy Jurka).
Collapse
Affiliation(s)
- Temple F Smith
- BioMolecular Engineering Research Center, 36 Cummington Street, Boston University, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
9
|
Yakhnin AV. A model for the origin of protein synthesis as coreplicational scanning of nascent RNA. ORIGINS LIFE EVOL B 2007; 37:523-36. [PMID: 17882534 DOI: 10.1007/s11084-007-9108-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 05/15/2007] [Indexed: 10/22/2022]
Abstract
The origin of protein synthesis is one of the major riddles of molecular biology. It was proposed a decade ago that the ribosomal RNA evolved from an earlier RNA-replisome (a ribozyme fulfilling RNA replication) while transfer RNA (tRNA) evolved from a genomic replication origin. Applying these hypotheses, I suggest that protein synthesis arose for the purpose of segregating copy and template RNA during replication through the conventional formation of a complementary strand. Nascent RNA was scanned in 5' to 3' direction following the progress of replication. The base pairing of several tRNA-like molecules with nascent RNA released the replication intermediates trapped in duplex. Synthesis of random peptides evolved to fuel the turnover of tRNAs. Then the combination of replication-coupled peptide formation and the independent development of amino acid-specific tRNA aminoacylation resulted in template-based protein synthesis. Therefore, the positioning of tRNAs adjacent to each other developed for the purpose of replication rather than peptide synthesis. This hypothesis does not include either selection for useful peptides or specific recognition of amino acids at the initial evolution of translation. It does, however, explain a number of features of modern translation apparatus, such as the relative flexibility of genetic code, the number of proteins shared by the transcription and translation machines, the universal participation of an RNA subunit in co-translational protein secretion, 'unscheduled translation', and factor-independent translocation. Assistance of original ribosomes in keeping apart the nascent transcript from its template is still widely explored by modern bacteria and perhaps by other domains of life.
Collapse
Affiliation(s)
- Alexander V Yakhnin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
10
|
Muller AWJ. Thermosynthesis as energy source for the RNA World: A model for the bioenergetics of the origin of life. Biosystems 2005; 82:93-102. [PMID: 16024164 DOI: 10.1016/j.biosystems.2005.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 06/10/2005] [Accepted: 06/10/2005] [Indexed: 11/26/2022]
Abstract
The thermosynthesis concept, biological free energy gain from thermal cycling, is combined with the concept of the RNA World. The resulting overall origin of life model suggests new explanations for the emergence of the genetic code and the ribosome. It is proposed that the first protein named pF(1) obtained the energy to support the RNA World by a thermal variation of F(1) ATP synthase's binding change mechanism. It is further proposed that this pF(1) was the single translation product during the emergence of the genetic machinery. During thermal cycling pF(1) condensed many substrates with broad specificity, yielding NTPs and randomly constituted protein and RNA libraries that contained self-replicating RNA. The smallness of pF(1) permitted the emergence of the genetic machinery by selection of RNA that increased the fraction of pF(1)s in the protein library: (1) an amino acids concatenating progenitor of rRNA bound to (2) a chain of 'positional tRNAs' linked by mutual recognition, and yielded a pF(1) (or its main motif); this positional tRNA set gradually evolved to a set of regular tRNAs functioning according to the genetic code, with concomitant emergence of (3) an mRNA coding for pF(1).
Collapse
Affiliation(s)
- Anthonie W J Muller
- Department of Geology, Washington State University, Pullman, WA 99164-2812, USA.
| |
Collapse
|
11
|
Taylor WR. Modelling molecular stability in the RNA world. Comput Biol Chem 2005; 29:259-72. [PMID: 16055383 DOI: 10.1016/j.compbiolchem.2005.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 04/18/2005] [Accepted: 04/18/2005] [Indexed: 11/25/2022]
Abstract
RNA secondary structure, stability and melting curves are calculated for a model of a possible ribozyme corresponding to the RNA directed RNA polymerase (ribopolymerase) required in the RNA world. From these calculations, rates of folding and hybridisation are estimated and used in a stochastic simulation of the dynamics of a population of ribopolymerase molecules. Two models are considered: one synthesising a conventional antiparallel reverse complementary transcript and one synthesising a parallel complementary transcript. It was found that the latter system can operate much more effective in the higher temperatures thought to prevail during the RNA world.
Collapse
Affiliation(s)
- William R Taylor
- Division of Mathematical Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
12
|
Di Giulio M. The early phases of genetic code origin: conjectures on the evolution of coded catalysis. ORIGINS LIFE EVOL B 2003; 33:479-89. [PMID: 14604187 DOI: 10.1023/a:1025772828039] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A review of the most significant contributions on the early phases of genetic code origin is presented. After stressing the importance of the key intermediary role played in protein synthesis, by peptidyl-tRNA, which is attributed with a primary function in ancestral catalysis, the general lines leading to the codification of the first amino acids in the genetic code are discussed. This is achieved by means of a model of protoribosome evolution which sees protoribosome as the central organiser of ancestral biosynthesis and the mediator of the encounter between compounds (metabolite-pre-tRNAs) and catalysts (peptidyl-pre-tRNAs). The encounter between peptidyl-pre-tRNA catalysts in protoribosome is favoured by metabolic pre-mRNAs and later resulted (given the high temperature at which this evolution is supposed to have taken place) in the evolution of mRNAs with codons of the type GNS. These mRNAs codified only for those amino acids that the coevolution theory of genetic code origin sees as the precursors of all other amino acids. Some aspects of the model here discussed might be rendered real by the transfer-messenger RNA molecule (tmRNA) which is here considered a molecular fossil of ancestral protein synthesis.
Collapse
Affiliation(s)
- Massimo Di Giulio
- Institute of Genetics and Biophysics Adriano Buzzati Traverso, CNR, Naples, Napoli, Italy.
| |
Collapse
|
13
|
Abstract
High resolution crystal structures of the ribosome provide fascinating insights into perhaps the most sophisticated machine of a cell. Yet, this translational apparatus must have developed from a much more primitive structure. Throughout the evolution of this apparatus, tRNAs have been, and still are, key players in the translation process.
Collapse
Affiliation(s)
- J Brosius
- Institute of Experimental Pathology/Molecular Neurobiology, ZMBE, University of Münster, Von-Esmarch-Str. 56, Münster, Germany.
| |
Collapse
|
14
|
Abstract
Acetyl-coenzyme A synthases (ACS) are Ni-Fe-S containing enzymes found in archaea and bacteria. They are divisible into 4 classes. Class I ACS's catalyze the synthesis of acetyl-CoA from CO2 + 2e-, CoA, and a methyl group, and contain 5 types of subunits (alpha, beta, gamma, delta, and epsilon). Class II enzymes catalyze essentially the reverse reaction and have similar subunit composition. Class III ACS's catalyze the same reaction as Class I enzymes, but use pyruvate as a source of CO2 and 2e-, and are composed of 2 autonomous proteins, an alpha 2 beta 2 tetramer and a gamma delta heterodimer. Class IV enzymes catabolize CO to CO2 and are alpha-subunit monomers. Phylogenetic analyses were performed on all five subunits. ACS alpha sequences divided into 2 major groups, including Class I/II sequences and Class III/IV-like sequences. Conserved residues that may function as ligands to the B- and C-clusters were identified. Other residues exclusively conserved in Class I/II sequences may be ligands to additional metal centers in Class I and II enzymes. ACS beta sequences also separated into two groups, but they were less divergent than the alpha's, and the separation was not as distinct. Class III-like beta sequences contained approximately 300 residues at their N-termini absent in Class I/II sequences. Conserved residues identified in beta sequences may function as ligands to active site residues used for acetyl-CoA synthesis. ACS gamma-sequences separated into 3 groups (Classes I, II, and III), while delta-sequences separated into 2 groups (Class I/II and III). These groups are less divergent than those of alpha sequences. ACS epsilon-sequence topology showed greater divergence and less consistency vis-à-vis the other subunits, possibly reflecting reduced evolutionary constraints due to the absence of metal centers. The alpha subunit phylogeny may best reflect the functional diversity of ACS enzymes. Scenarios of how ACS and ACS-containing organisms may have evolved are discussed.
Collapse
Affiliation(s)
- P A Lindahl
- Departments of Chemistry and of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-3255, USA.
| | | |
Collapse
|
15
|
Muller AW. Were the first organisms heat engines? A new model for biogenesis and the early evolution of biological energy conversion. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1995; 63:193-231. [PMID: 7542789 DOI: 10.1016/0079-6107(95)00004-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- A W Muller
- E.C. Slater Institute, BioCentrum Amsterdam, Universiteit van Amsterdam, The Netherlands
| |
Collapse
|