1
|
Jagadeeshan S, Singh RS. Rapid Evolution of Outer Egg Membrane Proteins in the Drosophila melanogaster Subgroup: A Case of Ecologically Driven Evolution of Female Reproductive Traits. Mol Biol Evol 2007; 24:929-38. [PMID: 17244601 DOI: 10.1093/molbev/msm009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although sexual selection has been predominantly used to explain the rapid evolution of sexual traits, eggs of oviparous organisms directly face both the challenges of sexual selection as well as natural selection (environmental challenges, survival in niches, etc.). Being the outermost membrane in most insect eggs, the chorion layer is the interface between the embryo and the environment, thereby serving to protect the egg. Adaptive ecological radiations such as divergence in ovipositional substrate usage and host-plant specializations can therefore influence the evolution of eggshell proteins. We can hypothesize that proteins localized on the outer eggshell may be affected to a greater degree by ecological challenges compared with inner eggshell proteins, and therefore, proteins localized in the outer eggshell (chorion membrane) may evolve differently (faster) than proteins localized in the inner egg membrane (vitelline membrane). We compared the evolutionary divergence of vitelline with chorion membrane proteins in species of the melanogaster subgroup and found that chorion proteins as a group are indeed evolving faster than vitelline membrane proteins. At least one vitelline membrane protein (Vm32E), specifically localized on the outer eggshell, is also evolving faster than other vitelline membrane proteins suggesting that all proteins localized on the outer eggshell may be evolving rapidly. We also found evidence that specific codons in chorion proteins cp15 and cp16 are evolving under positive selection. Polymorphism surveys of cp16 revealed inflated levels of divergence relative to polymorphism in specific regions of the gene, indicating that these regions are under strong selection. At the morphological level, we found notable difference in eggshell surface morphologies between specialist (Drosophila sechellia and Drosophila erecta) and generalist species of Drosophila. We do not know if any of the chorion proteins actually interact with spermatozoids, therefore leaving the possibility of rapid evolution through gametic interaction wide open. At this point, however, our results support previous suggestions that divergences in ecology, particularly, ovipositional substrate divergences may be a strong force driving the evolution of eggshell proteins.
Collapse
|
2
|
Vlachou D, Komitopoulou K. The chorion genes of the medfly. II. DNA sequence evolution of the autosomal chorion genes s18, s15, s19 and s16 in Diptera. Gene 2001; 270:41-52. [PMID: 11404001 DOI: 10.1016/s0378-1119(01)00482-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We present a total of approximately 15 kb of DNA sequences, encompassing four chorion genes Ccs18, Ccs15, Ccs19, Cc16 and their flanking DNA in the medfly C. capitata. Comparison of coding regions, introns and intergenic sequences in five Dipteran species, D. melanogaster, D. subobscura, D. virilis, D. grimshawi and C. capitata documented an extensive divergence in introns and coding regions, but few well conserved elements in the proximal 5' flanking regions in all species. These elements are related to conserved regulatory features of three of the genes, including tissue- and temporal regulation. In the fourth, gene s15, significant alterations in the 5' flanking region may be responsible for its changed temporal regulation in C. capitata. One long intergenic sequence, located in the distal 5' flanking region of gene s18, is homologous to ACE3, a major amplification control element and contains an 80-bp A/T-rich sequence, known to stimulate strong binding of the origin recognition complex (ORC) in D. melanogaster. Analysis of the nucleotide composition of all chorion genes in C. capitata and D. melanogaster showed that C. capitata exhibit less biased representation of synonymous codons than does D. melanogaster.
Collapse
Affiliation(s)
- D Vlachou
- Department of Genetics and Biotechnology, School of Biological Sciences, University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | | |
Collapse
|
3
|
Abstract
The Drosophila eggshell is a specialized extracellular matrix that forms between the oocyte and overlaying somatic follicle cells during the latter stages of oogenesis. Largely proteinaceous, the eggshell is a highly organized multilayered structure with regional specializations designed to perform a variety of functions. Production of a functional eggshell features: (1) the differentiation of subsets of follicle cells in response to ovarian signals, (2) directed migrations of the follicle cells within the developing egg chamber, (3) expression of eggshell structural genes by the follicle cells in a defined temporal and spatial order, (4) postdepositional modifications of the eggshell proteins including several temporally regulated proteolytic cleavage events, and (5) regulated trafficking of several eggshell proteins in the assembling structure. By exploiting the genetic advantages of Drosophila and using evolution as a guide, the eggshell provides an excellent experimental system to study, in vivo, molecular mechanisms used to regulate protein-protein interactions throughout the assembly of a complex extracellular architecture in a developing organism.
Collapse
Affiliation(s)
- G L Waring
- Department of Biology, Marquette University, Milwaukee, WI 53201-1881, USA
| |
Collapse
|
4
|
Caterino MS, Cho S, Sperling FA. The current state of insect molecular systematics: a thriving Tower of Babel. ANNUAL REVIEW OF ENTOMOLOGY 2000; 45:1-54. [PMID: 10761569 DOI: 10.1146/annurev.ento.45.1.1] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Insect molecular systematics has undergone remarkable recent growth. Advances in methods of data generation and analysis have led to the accumulation of large amounts of DNA sequence data from most major insect groups. In addition to reviewing theoretical and methodological advances, we have compiled information on the taxa and regions sequenced from all available phylogenetic studies of insects. It is evident that investigators have not usually coordinated their efforts. The genes and regions that have been sequenced differ substantially among studies and the whole of our efforts is thus little greater than the sum of its parts. The cytochrome oxidase I, 16S, 18S, and elongation factor-1 alpha genes have been widely used and are informative across a broad range of divergences in insects. We advocate their use as standards for insect phylogenetics. Insect molecular systematics has complemented and enhanced the value of morphological and ecological data, making substantial contributions to evolutionary biology in the process. A more coordinated approach focused on gathering homologous sequence data will greatly facilitate such efforts.
Collapse
Affiliation(s)
- M S Caterino
- Department of Environmental Science, Policy and Management, University of California, Berkeley 94720-3112, USA
| | | | | |
Collapse
|
5
|
Abstract
The neutral theory of molecular evolution has been instrumental in organizing our thinking about the nature of evolutionary forces shaping variation at the DNA level. More importantly, it has provided empiricists with a strong set of testable predictions and hence, a useful null hypothesis against which to test for the presence of selection. Evidence indicates that the neutral theory cannot explain key features of protein evolution nor patterns of biased codon usage in certain species. Whereas we now have a reasonable model of selection acting on synonymous changes in Drosophila, protein evolution remains poorly understood. Despite limitations in the applicability of the neutral theory, it is likely to remain an integral part of the quest to understand molecular evolution.
Collapse
Affiliation(s)
- M Kreitman
- Department of Ecology and Evolution, University of Chicago, IL 60637, USA.
| |
Collapse
|
6
|
Ho KF, Craddock EM, Piano F, Kambysellis MP. Phylogenetic analysis of DNA length mutations in a repetitive region of the Hawaiian Drosophila yolk protein gene Yp2. J Mol Evol 1996; 43:116-24. [PMID: 8660436 DOI: 10.1007/bf02337356] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nucleotide sequence analysis has demonstrated that interspecific size variation in the YP2 yolk protein among Hawaiian Drosophila is due to in-frame insertions and deletions in two repetitive segments of the coding region of the Yp2 gene. Sequence comparisons of the complex repetitive region close to the 5' end of this gene across 34 endemic Hawaiian taxa revealed five length morphs, spanning a length difference of 21 nucleotides (nt). A phylogenetic character reconstruction of the length mutations on an independently derived molecular phylogeny showed clade-specific length variants arising from six ancient events: two identical insertions of 6 nt, and four deletions, one of 6 nt, one of 12 nt, and two identical but independent deletions of 15 nt. These mutations can be attributed to replication slippage with nontandem trinucleotide repeats playing a major role in the slipped-strand mispairing. Geographic analysis suggests that the 15 nt deletion which distinguishes the planitibia subgroup from the cyrtoloma subgroup occurred on Oahu about 3 million years ago. The homoplasies observed caution against relying too heavily on nucleotide insertions/deletions for phylogenetic inference. In contrast to the extensive repeat polymorphisms within other Drosophila and the human species, the more complex 5' Yp2 repetitive region analyzed here appears to lack polymorphism among Hawaiian Drosophila, perhaps due to founder effects, low population sizes, and hitchhiking effects of selection on the immediately adjacent 5' region.
Collapse
Affiliation(s)
- K F Ho
- Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | |
Collapse
|
7
|
Andersson S, Lambertsson A. Evolution of the dec-1 eggshell locus in Drosophila. II. Intraspecific DNA sequence analysis reveals length mutations in a repetitive region in D. melanogaster. J Mol Evol 1993; 36:536-44. [PMID: 8350348 DOI: 10.1007/bf00556358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The dec-1 eggshell gene in Drosophila melanogaster encodes follicle cell proteins required for proper eggshell assembly. As shown by Southern and Northern analyses the dec-1 gene occurs in four alleles (Fc1-4) among wild-type strains. Its second exon has a distinct feature in the form of 12 repeats with 78-91 nucleotides; the first five show nearly 100% homology. DNA sequence comparison of the repeated region of the alleles revealed that the length polymorphisms are caused by changes in the numbers of the first five repeats. The results suggest that the alleles have been generated by unequal intragenic crossing-over and/or slippage during DNA replication and that the allelic length variants have arisen independently. The possibility that the most common allele, FC1, has a selective advantage over the other alleles is discussed.
Collapse
Affiliation(s)
- S Andersson
- Department of Genetics, University of Umeå, Sweden
| | | |
Collapse
|
8
|
Abstract
Some evolutionary consequences of different rates and trends in DNA damage and repair are explained. Different types of DNA damaging agents cause nonrandom lesions along the DNA. The type of DNA sequence motifs to be preferentially attacked depends upon the chemical or physical nature of the assaulting agent and the DNA base composition. Higher-order chromatin structure, the nonrandom nucleosome positioning along the DNA, the absence of nucleosomes from the promoter regions of active genes, curved DNA, the presence of sequence-specific binding proteins, and the torsional strain on the DNA induced by an increased transcriptional activity all are expected to affect rates of damage of individual genes. Furthermore, potential Z-DNA, H-DNA, slippage, and cruciform structures in the regulatory region of some genes or in other genomic loci induced by torsional strain on the DNA are more prone to modification by genotoxic agents. A specific actively transcribed gene may be preferentially damaged over nontranscribed genes only in specific cell types that maintain this gene in active chromatin fractions because of (1) its decondensed chromatin structure, (2) torsional strain in its DNA, (3) absence of nucleosomes from its regulatory region, and (4) altered nucleosome structure in its coding sequence due to the presence of modified histones and HMG proteins. The situation in this regard of germ cell lineages is, of course, the only one to intervene in evolution. Most lesions in DNA such as those caused by UV or DNA alkylating agents tend to diminish the GC content of genomes. Thus, DNA sequences not bound by selective constraints, such as pseudogenes, will show an increase in their AT content during evolution as evidenced by experimental observations. On the other hand, transcriptionally active parts may be repaired at rates higher than inactive parts of the genome, and proliferating cells may display higher repair activities than quiescent cells. This might arise from a tight coupling of the repair process with both transcription and replication, all these processes taking place on the nuclear matrix. Repair activities differ greatly among species, and there is a good correlation between life span and repair among mammals. It is predicted that genes that are transcriptionally active in germ-cell lineages have a lower mutation rate than bulk DNA, a circumstance that is expected to be reflected in evolution. Exception to this rule might be genes containing potential Z-DNA, H-DNA, or cruciform structures in their coding or regulatory regions that appear to be refractory to repair.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- T Boulikas
- Linus Pauling Institute of Science and Medicine, Palo Alto, CA
| |
Collapse
|
9
|
Friedman TB, Burnett JB, Lootens S, Steinman R, Wallrath LL. The urate oxidase gene of Drosophila pseudoobscura and Drosophila melanogaster: evolutionary changes of sequence and regulation. J Mol Evol 1992; 34:62-77. [PMID: 1556745 DOI: 10.1007/bf00163853] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The urate oxidase (UO) transcription unit of Drosophila pseudoobscura was cloned, sequenced, and compared to the UO transcription unit from Drosophila melanogaster. In both species the UO coding region is divided into two exons of approximately equal size. The deduced D. pseudoobscura and D. melanogaster UO peptides have 346 and 352 amino acid residues, respectively. The nucleotide sequences of the D. pseudoobscura and D. melanogaster UO protein-coding regions are 82.2% identical whereas the deduced amino acid sequences are 87.6% identical with 42 amino acid changes, 33 of which occur in the first exon. Although the UO gene is expressed exclusively within the cells of the Malpighian tubules in both of these species, the temporal patterns of UO gene activity during development are markedly different. UO enzyme activity, UO protein, and UO mRNA are found in the third instar larva and adult of D. melanogaster but only in the adult stage of D. pseudoobscura. The intronic sequences and the extragenic 5' and 3' flanking regions of the D. pseudoobscura and D. melanogaster UO genes are highly divergent with the exception of eight small islands of conserved sequence along 772 bp 5' of the UO protein-coding region. These islands of conserved sequence are possible UO cis-acting regulatory elements as they reside along the 5' flanking DNA of the D. melanogaster UO gene that is capable of conferring a wild-type D. melanogaster pattern of UO regulation on a UO-lacZ fusion gene.
Collapse
Affiliation(s)
- T B Friedman
- Graduate Program in Genetics, Michigan State University, East Lansing 48824
| | | | | | | | | |
Collapse
|
10
|
Brezinsky L, Humphreys TD, Hunt JA. Evolution of the transposable element Uhu in five species of Hawaiian Drosophila. Genetica 1992; 86:21-35. [PMID: 1334909 DOI: 10.1007/bf00133708] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The complete DNA sequence of three independent isolates of Uhu, a member of the Tc1-like class of transposable elements from D. heteroneura (Uhu-1, Uhu-3, and Uhu-4), has been determined. These isolates have between 95 and 96.4% nucleotide sequence identity indicating that Uhu is well conserved within this species. A comparison of the DNA sequences of Uhu and the D. melanogaster Hb1 transposable element shows that the nucleotide substitution rate for Uhu is comparable to the synonymous rate for the Adh gene in these species. Uhu has been identified in four other species of endemic Hawaiian Drosophila, D. silvestris, D. differens, D. planitibia and D. picticornis, and nine Uhu elements were isolated from genomic libraries of these four species. A 444 base pair region from within the coding region of the Uhu element, with well conserved ends, was amplified by the polymerase chain reaction and used for sequence comparison of elements from different species. The analysis of the sequence similarities between the elements within and between the species shows a grouping of the two pairs of most closely related species (D. heteroneura and D. silvestris, and D. differens and D. planitibia), but shows a much larger variation within the most recently diverged species (D. heteroneura and D. silvestris) than expected. There are extensive nucleotide substitutions and deletions in the Uhu elements from D. picticornis showing that they are degenerating and being lost in this species. These observations indicate that the Uhu element has been transmitted vertically and that transposition may have been activated at the time of formation of each species as it colonized the newly formed islands of the Hawaiian archipelago.
Collapse
Affiliation(s)
- L Brezinsky
- Department of Genetics and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu 96822
| | | | | |
Collapse
|