1
|
Flores-Tornero M, Becker JD. 50 years of sperm cell isolations: from structural to omic studies. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad117. [PMID: 37025026 DOI: 10.1093/jxb/erad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Indexed: 06/19/2023]
Abstract
The fusion of male and female gametes is a fundamental process in the perpetuation and diversification of species. During the last 50 years, significant efforts have been made to isolate and characterize sperm cells from flowering plants, and to identify how these cells interact with female gametes to achieve double fertilization. The first techniques and analytical approaches not only provided structural and biochemical characterizations of plant sperm cells but also paved the way for in vitro fertilization studies. Further technological advances then led to unique insights into sperm biology at transcriptomic, proteomic and epigenetic level. Starting with a historical overview of sperm cell isolation techniques, we provide examples of how these contributed to create our current knowledge of sperm cell biology, and point out remaining challenges.
Collapse
Affiliation(s)
- María Flores-Tornero
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157 Portugal
| | - Jörg D Becker
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157 Portugal
| |
Collapse
|
2
|
Sugi N, Izumi R, Tomomi S, Susaki D, Kinoshita T, Maruyama D. Removal of the endoplasma membrane upon sperm cell activation after pollen tube discharge. FRONTIERS IN PLANT SCIENCE 2023; 14:1116289. [PMID: 36778680 PMCID: PMC9909283 DOI: 10.3389/fpls.2023.1116289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
In pollen and pollen tubes, immotile sperm cells are enclosed by an inner vegetative plasma membrane (IVPM), a single endomembrane originating from the vegetative-cell plasma membrane. It is widely believed that sperm cells must be removed from the IVPM prior to gamete associations and fusions; however, details of the timing and morphological changes upon IVPM dissociation remain elusive. Here, we report a rapid IVPM breakdown immediately before double fertilization in Arabidopsis thaliana. The IVPM was stably observed in coiling pollen tubes when pollen tube discharge was prevented using lorelei mutant ovules. In contrast, a semi-in vivo fertilization assay in wild-type ovules demonstrated fragmented IVPM around sperm nuclei 1 min after pollen tube discharge. These observations revealed the dynamic alteration of released sperm cells and provided new insights into double fertilization in flowering plants. With a summary of recent findings on IVPM lipid composition, we discussed the possible physiological signals controlling IVPM breakdown.
Collapse
|
3
|
Leszczuk A, Szczuka E, Zdunek A. Arabinogalactan proteins: Distribution during the development of male and female gametophytes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:9-18. [PMID: 30496891 DOI: 10.1016/j.plaphy.2018.11.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 05/07/2023]
Abstract
Arabinogalactan proteins (AGPs), i.e. a subfamily of hydroxyproline-rich proteins (HRGPs), are widely distributed in the plant kingdom. For many years, AGPs have been connected with the multiple phases of plant reproduction and developmental processes. Currently, extensive knowledge is available about their various functions, i.e. involvement in pollen grain formation, initiation of pollen grain germination, pollen tube guidance in the transmission tissue of pistil and ovule nucellus, and function as a signaling molecule during cell-cell communication. Although many studies have been performed, the mechanism of action, the heterogeneous molecule structure, and the connection with other extracellular matrix components have not been sufficiently explained. The aim of this work was to gather and describe the most important information on the distribution of AGPs in gametophyte development. The present review provides a summary of the first reports about AGPs and the most recent knowledge about their functions during male and female gametophyte formation.
Collapse
Affiliation(s)
- A Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland.
| | - E Szczuka
- Department of Plant Anatomy and Cytology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - A Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland.
| |
Collapse
|
4
|
Corral-Martínez P, García-Fortea E, Bernard S, Driouich A, Seguí-Simarro JM. Ultrastructural Immunolocalization of Arabinogalactan Protein, Pectin and Hemicellulose Epitopes Through Anther Development in Brassica napus. PLANT & CELL PHYSIOLOGY 2016; 57:2161-2174. [PMID: 27481894 DOI: 10.1093/pcp/pcw133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/20/2016] [Indexed: 05/07/2023]
Abstract
In this work, we performed an extensive and detailed analysis of the changes in cell wall composition during Brassica napus anther development. We used immunogold labeling to study the spatial and temporal patterns of the composition and distribution of different arabinogalactan protein (AGP), pectin, xyloglucan and xylan epitopes in high-pressure-frozen/freeze-substituted anthers, quantifying and comparing their relative levels in the different anther tissues and developmental stages. We used the following monoclonal antibodies: JIM13, JIM8, JIM14 and JIM16 for AGPs, LM5, LM6, JIM7, JIM5 and LM7 for pectins, CCRC-M1, CCRC-M89 and LM15 for xyloglucan, and LM11 for xylan. Each cell wall epitope showed a characteristic temporal and spatial labeling pattern. Microspore, pollen and tapetal cells showed similar patterns for each epitope, whereas the outermost anther layers (epidermis, endothecium and middle layers) presented remarkably different patterns. Our results suggested that AGPs, pectins, xyloglucan and xylan have specific roles during anther development. The AGP epitopes studied appeared to belong to AGPs specifically involved in microspore differentiation, and contributed first by the tapetum and then, upon tapetal dismantling, by the endothecium and middle layers. In contrast, the changes in pectin and hemicellulose epitopes suggested a specific role in anther dehiscence, facilitating anther wall weakening and rupture. The distribution of the different cell wall constituents is regulated in a tissue- and stage-specific manner, which seems directly related to the role of each tissue at each stage.
Collapse
Affiliation(s)
- Patricia Corral-Martínez
- COMAV, Universitat Politècnica de València, CPI, Edificio 8E, Escalera I, Camino de Vera, s/n, 46022, Valencia, Spain
| | - Edgar García-Fortea
- COMAV, Universitat Politècnica de València, CPI, Edificio 8E, Escalera I, Camino de Vera, s/n, 46022, Valencia, Spain
| | - Sophie Bernard
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV)-EA 4358, Plateforme d'Imagerie Cellulaire (PRIMACEN) et Grand Reseau de Recherche VASI de Haute Normandie, Normandie Université, Université de Rouen, 76821 Mont Saint Aignan, Cedex, France
| | - Azeddine Driouich
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV)-EA 4358, Plateforme d'Imagerie Cellulaire (PRIMACEN) et Grand Reseau de Recherche VASI de Haute Normandie, Normandie Université, Université de Rouen, 76821 Mont Saint Aignan, Cedex, France
| | - Jose M Seguí-Simarro
- COMAV, Universitat Politècnica de València, CPI, Edificio 8E, Escalera I, Camino de Vera, s/n, 46022, Valencia, Spain
| |
Collapse
|
5
|
Lopez RA, Renzaglia KS. Arabinogalactan proteins and arabinan pectins abound in the specialized matrices surrounding female gametes of the fern Ceratopteris richardii. PLANTA 2016; 243:947-957. [PMID: 26739842 DOI: 10.1007/s00425-015-2448-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/15/2015] [Indexed: 06/05/2023]
Abstract
Both male and female gametes of archegoniates are highly specialized cells surrounded by an extraprotoplasmic matrix rich in AGPs, which are speculated to facilitate development and gamete fusion through Ca 2+) oscillations. An additional layer, the egg envelope, forms around the egg periphery, except at the fertilization pore, and contains arabinose-rich polymers that presumably impart flexibility for the rapidly growing zygote and embryo. The abundant AGPs and arabinan pectins associated with the eggs of C. richardii not only are integral to development, fertilization, and early embryogenesis, but also may be involved in desiccation tolerance important to the survival of the reproductive gametophyte. A defining feature of gametogenesis in archegoniates is the deposition of a special matrix outside of the plasmalemma of both egg and sperm cells that displaces the primary cell wall away from the protoplasm. It is within this matrix that gamete differentiation occurs. In leptosporangiate ferns, maturation of the egg cell involves the deposition of a second specialized wall, the so-called egg envelope that surrounds the cell except at the fertilization pore, a narrow site where gamete fusion takes place. We provide the first conclusive evidence of the macromolecular constituents in the unique structures surrounding fern egg cells before and after fertilization. To test the hypotheses that the egg extracellular matrix contains arabinogalactan proteins (AGPs) as does the sperm cell matrix, and that cell wall polysaccharides, especially pectins, are components of the egg envelope, we examined the expression patterns of AGPs and cell wall constituents during oogenesis in Ceratopteris richardii. Utilizing histochemical stains for callose, cellulose and AGPs coupled with immunogold localizations employing a suite of monoclonal antibodies to cell wall components (JIM13, JIM8, LM2, LM5, LM6, LM19, LM20 and anticallose), we demonstrate that AGPs, but not pectins, are abundant in the matrix around egg cells and degrading neck canal and ventral canal cells during archegonial development. A striking finding is that both AGPs and (1,5)-α-L-arabinan pectin epitopes are principle components of the egg envelope before and after fertilization, suggesting that they are important in both egg maturation and gamete fusion.
Collapse
Affiliation(s)
- Renee A Lopez
- Department of Plant Biology, MC: 6509, Southern Illinois University Carbondale, Carbondale, IL, 62901, USA.
| | - Karen S Renzaglia
- Department of Plant Biology, MC: 6509, Southern Illinois University Carbondale, Carbondale, IL, 62901, USA
| |
Collapse
|
6
|
Mori T, Kawai-Toyooka H, Igawa T, Nozaki H. Gamete Dialogs in Green Lineages. MOLECULAR PLANT 2015; 8:1442-54. [PMID: 26145252 DOI: 10.1016/j.molp.2015.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/15/2015] [Accepted: 06/28/2015] [Indexed: 05/20/2023]
Abstract
Gamete fusion is a core process of sexual reproduction and, in both plants and animals, different sex gametes fuse within species. Although most of the molecular factors involved in gamete interaction are still unknown in various sex-possessing eukaryotes, reports of such factors in algae and land plants have been increasing in the past decade. In particular, knowledge of gamete interaction in flowering plants and green algae has increased since the identification of the conserved gamete fusion factor generative cell specific 1/hapless 2 (GCS1/HAP2). GCS1 was first identified as a pollen generative cell-specific transmembrane protein in the lily (Lilium longiflorum), and was then shown to function not only in flowering plant gamete fusion but also in various eukaryotes, including unicellular protists and metazoans. In addition, although initially restricted to Chlamydomonas, knowledge of gamete attachment in flowering plants was also acquired. This review focuses on recent progress in the study of gamete interaction in volvocine green algae and flowering plants and discusses conserved mechanisms of gamete recognition, attachment, and fusion leading to zygote formation.
Collapse
Affiliation(s)
- Toshiyuki Mori
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroko Kawai-Toyooka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoko Igawa
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
7
|
Lopez RA, Renzaglia KS. Multiflagellated sperm cells of Ceratopteris richardii are bathed in arabinogalactan proteins throughout development. AMERICAN JOURNAL OF BOTANY 2014; 101:2052-2061. [PMID: 25480702 DOI: 10.3732/ajb.1400424] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
UNLABELLED • PREMISE OF THE STUDY Sperm cell differentiation in ferns involves the origin of an elaborate locomotory apparatus, including 70+ flagella, and the structural modification of every cellular component. Because arabinogalactan proteins (AGPs) are implicated in molecular signaling and in regulation of plant development, we speculated that these glycoproteins would be present during spermiogenesis in ferns.• METHODS Using β-glucosyl Yariv reagents that specifically bind to and inhibit AGPs and immunogold localizations with monoclonal antibodies JIM13, JIM8, and LM6, we examined the specific expression patterns of AGPs and inhibited their function during sperm cell development in the model fern Ceratopteris richardii.• KEY RESULTS Developing sperm cells stained intensely with Yariv phenylglycosides, demonstrating the presence of AGPs. JIM13-AGP epitopes were widespread throughout development in the expanding extraprotoplasmic matrix (EPM) in which flagella elongate, cytoplasm is eliminated, and spherical spermatids become coiled. JIM8 and LM6 epitopes localized to the plasmalemma on growing flagella and on the rapidly changing sperm cell body. Spermatids treated with β-glucosyl lacked an EPM and formed fewer, randomly arranged flagella.• CONCLUSIONS We demonstrated that AGPs are abundant in the EPM and along the plasmalemma and that the three AGP epitopes have specific expression patterns during development. Coupled with inhibition studies, these results identify AGPs as critical to the formation of an extraprotoplasmic matrix and the consequent origin and development of flagella in an orderly and precise fashion around the cell. We speculate that AGPs may play additional roles as signaling molecules involved in cell shaping, cytoskeletal development, vesicle trafficking, and cytoplasmic elimination.
Collapse
Affiliation(s)
- Renee A Lopez
- Department of Plant Biology, Southern Illinois University Carbondale, Carbondale, Illinois 62901 USA
| | - Karen S Renzaglia
- Department of Plant Biology, Southern Illinois University Carbondale, Carbondale, Illinois 62901 USA
| |
Collapse
|
8
|
Localisation pattern of homogalacturonan and arabinogalactan proteins in developing ovules of the gymnosperm plant Larix decidua Mill. ACTA ACUST UNITED AC 2010; 24:75-87. [PMID: 21069390 DOI: 10.1007/s00497-010-0154-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 10/17/2010] [Indexed: 10/18/2022]
Abstract
We have identified and characterised the temporal and spatial distribution of the homogalacturonan (HG) and arabinogalactan proteins (AGP) epitopes that are recognised by the antibodies JIM5, JIM7, LM2, JIM4, JIM8 and JIM13 during ovule differentiation in Larix decidua Mill. The results obtained clearly show differences in the pattern of localisation of specific HG epitopes between generative and somatic cells of the ovule. Immunocytochemical studies revealed that the presence of low-esterified HG is characteristic only of the wall of megasporocyte and megaspores. In maturing female gametophytes, highly esterified HG was the main form present, and the central vacuole of free nuclear gametophytes was particularly rich in this category of HG. This pool will probably be used in cell wall building during cellularisation. The selective labelling obtained with AGP antibodies indicates that some AGPs can be used as markers for gametophytic and sporophytic cells differentiation. Our results demonstrated that the AGPs recognised by JIM4 may constitute molecules determining changes in ovule cell development programs. Just after the end of meiosis, the signal detected with JIM4 labelling appeared only in functional and degenerating megaspores. This suggests that the antigens bound by JIM4 are involved in the initiation of female gametogenesis in L. decidua. Moreover, the analysis of AGPs distribution showed that differentiation of the nucellus cells occurs in the very young ovule stage before megasporogenesis. Throughout the period of ovule development, the pattern of localisation of the studied AGPs was different both in tapetum cells surrounding the gametophyte and in nucellus cells. Changes in the distribution of AGPs were also observed in the nucellus of the mature ovule, and they could represent an indicator of tissue arrangement to interact with the growing pollen tube. The possible role of AGPs in fertilisation is also discussed.
Collapse
|
9
|
Gou X, Yuan T, Wei X, Russell SD. Gene expression in the dimorphic sperm cells of Plumbago zeylanica: transcript profiling, diversity, and relationship to cell type. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:33-47. [PMID: 19500307 DOI: 10.1111/j.1365-313x.2009.03934.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plumbago zeylanica produces cytoplasmically dimorphic sperm cells that target the egg and central cell during fertilization. In mature pollen, the larger sperm cell contains numerous mitochondria, is associated with the vegetative nucleus (S(vn)), and fuses preferentially with the central cell, forming endosperm. The other, plastid-enriched sperm cell (S(ua)) fuses with the egg cell, forming the zygote and embryo. Sperm expressed genes were investigated using ESTs produced from each sperm type; differential expression was validated through suppression subtractive hybridization, custom microarrays, real-time RT-PCR and in situ hybridization. The expression profiles of dimorphic sperm cells reflect a diverse and broad complement of genes, including high proportions of conserved and unknown genes, as well as distinct patterns of expression. A number of genes were highly up-regulated in the male germ line, including some genes that were differentially expressed in either the S(ua) or the S(vn). Differentially up-regulated genes in the egg-targeted S(ua) showed increased expression in transcription and translation categories, whereas the central cell-targeted S(vn) displayed expanded expression in the hormone biosynthesis category. Interestingly, the up-regulated genes expressed in the sperm cells appeared to reflect the expected post-fusion profiles of the future embryo and endosperm. As sperm cytoplasm is known to be transmitted during fertilization in this plant, sperm-contributed mRNAs are probably transported during fertilization, which could influence early embryo and endosperm development.
Collapse
Affiliation(s)
- Xiaoping Gou
- Department of Botany, University of Oklahoma, Norman, OK 73019, USA
| | | | | | | |
Collapse
|
10
|
Hou X, Hu WW, Shen L, Lee LYC, Tao Z, Han JH, Yu H. Global identification of DELLA target genes during Arabidopsis flower development. PLANT PHYSIOLOGY 2008; 147:1126-42. [PMID: 18502975 PMCID: PMC2442519 DOI: 10.1104/pp.108.121301] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 05/20/2008] [Indexed: 05/19/2023]
Abstract
Gibberellin (GA) plays important roles in regulating many aspects of plant development. GA derepresses its signaling pathway by promoting the degradation of DELLA proteins, a family of nuclear growth repressors. Although the floral organ identity is established in flowers of the GA-deficient mutant ga1-3, the growth of all floral organs is severely retarded. In particular, abortive anther development in ga1-3 results in male sterility. Genetic analysis has revealed that various combinations of null mutants of DELLA proteins could gradually rescue floral organ defects in ga1-3 and that RGA is the most important DELLA protein involved in floral organ development. To elucidate the early molecular events controlled by RGA during flower development, we performed whole-genome microarray analysis to identify genes in response to the steroid-inducible activation of RGA in ga1-3 rgl2 rga 35S:RGA-GR. Although DELLA proteins were suggested as transcriptional repressors, similar numbers of genes were down-regulated or up-regulated by RGA during floral organ development. More than one-third of RGA down-regulated genes were specifically or predominantly expressed in stamens. A significant number of RGA-regulated genes are involved in phytohormone signaling or stress response. Further expression analysis through activation of RGA by steroid induction combined with cycloheximide identified eight genes as immediate targets of RGA. In situ hybridization and transgenic studies further showed that the expression pattern and function of several selected genes were consistent with the predictions from microarray analysis. These results suggest that DELLA regulation of floral organ development is modulated by multiple phytohormones and stress signaling pathways.
Collapse
Affiliation(s)
- Xingliang Hou
- Department of Biological Sciences, Faculty of Sciences , National University of Singapore, Singapore 117543
| | | | | | | | | | | | | |
Collapse
|
11
|
Singh MB, Bhalla PL. Control of male germ-cell development in flowering plants. Bioessays 2007; 29:1124-32. [DOI: 10.1002/bies.20660] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Chen SH, Liao JP, Kuang AX, Tian HQ. Isolation of two populations of sperm cells from the pollen tube of Torenia fournieri. PLANT CELL REPORTS 2006; 25:1138-42. [PMID: 16786313 DOI: 10.1007/s00299-006-0189-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 05/08/2006] [Accepted: 05/28/2006] [Indexed: 05/10/2023]
Abstract
The two sperm cells of Torenia fournieri are dimorphic. The dimorphic character suggests that they might be preferentially involved in fertilization during in vivo fusion with the egg cell and central cell. To probe the mechanism of preferential fertilization, it is necessary to use the most current molecular techniques. For this purpose, populations of >1000 individuals of the two dimorphic sperm cells, Sua (unassociated with the vegetative nucleus) and Svn (associated with the vegetative nucleus) were isolated from pollen tubes that had grown out of the cut ends of the styles. The two sperm cells released from pollen tubes remained attached to one another. When the two attached sperm cells were transferred into a solution containing 0.01% cellulose, 0.01% pectinase, and 5% mannitol, the connection between the two cells disappeared, and they were easily separated using a micromanipulator. The collection of these two individual populations containing over a thousand cells will permit research on gametic recognition at the molecular level.
Collapse
Affiliation(s)
- Su Hong Chen
- South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | | | | | | |
Collapse
|
13
|
Wiśniewska E, Majewska-Sawka A. Cell wall polysaccharides in differentiating anthers and pistils of Lolium perenne. PROTOPLASMA 2006; 228:65-71. [PMID: 16937056 DOI: 10.1007/s00709-006-0175-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 06/08/2005] [Indexed: 05/07/2023]
Abstract
We are presenting the pattern of distribution of several carbohydrate epitopes, which constitute an important component of cell walls, within the anthers and pistils of a monocot grass species, perennial ryegrass (Lolium perenne L.). The results of immunocytochemical studies revealed that the flower organs are rich in (1-->3, 1-->4)-beta-D-glucans and possess surprisingly high amounts of methylesterified pectic domains that bind JIM7 antibody and pectin side chains rich in (1-->4)-beta-D-galactose residues which react with LM5 antibody. The presence of arabinogalactan protein epitopes binding JIM13 is restricted to microspores and ovule integuments. The results are discussed in terms of possible functions of cell wall polysaccharides and arabinogalactan proteins in the differentiation of flower organs.
Collapse
Affiliation(s)
- Ewa Wiśniewska
- Institute of Plant Breeding and Acclimatization, Bydgoszcz, Poland.
| | | |
Collapse
|
14
|
In vitro fertilization as a tool for investigating sexual reproduction of angiosperms. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s00497-006-0029-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Dresselhaus T. Cell-cell communication during double fertilization. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:41-7. [PMID: 16324880 DOI: 10.1016/j.pbi.2005.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 11/21/2005] [Indexed: 05/05/2023]
Abstract
Double fertilization in flowering seed plants requires intercellular signaling events between many interacting partners. The four cell types of the seven-celled female gametophyte communicate with each other to establish and maintain their identity. They secrete signaling molecules to guide the male gametophyte and to mediate sperm cell discharge and transport towards the two female gametes (the egg and central cell). After fusion of the gametes, guidance signals have to be removed to prevent polyspermy, embryo and endosperm development is induced generating daughter cells or nuclear regions of a different fate, and cell death is induced in the surrounding ovular cells. Until recently, little was known about the molecular nature of the signaling molecules that are involved in these processes. Now, small secreted proteins and peptides have been identified as prime candidates mediating several of these communication events.
Collapse
Affiliation(s)
- Thomas Dresselhaus
- Developmental Biology & Biotechnology, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany.
| |
Collapse
|
16
|
Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T. GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nat Cell Biol 2005; 8:64-71. [PMID: 16378100 DOI: 10.1038/ncb1345] [Citation(s) in RCA: 323] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 11/24/2005] [Indexed: 11/08/2022]
Abstract
The double fertilization process in angiosperms is based on the delivery of a pair of sperm cells by the pollen tube (the male gametophyte), which elongates towards an embryo sac (the female gametophyte) enclosing an egg and a central cell. Several studies have described the mechanisms of gametophyte interaction, and also the fertilization process - from pollination to pollen tube acceptance. However, the mechanisms of gamete interaction are not fully understood. Cytological studies have shown that male gametes possess distinct cell-surface structures and genes specific to male gametes have been detected in cDNA libraries. Thus, studies of isolated gametes may offer clues to understanding the sperm-egg interaction. In this study, we identified a novel protein, designated GCS1 (GENERATIVE CELL SPECIFIC 1), using generative cells isolated from Lilium longiflorum pollen. GCS1 possesses a carboxy-terminal transmembrane domain, and homologues are present in various species, including non-angiosperms. Immunological assays indicate that GCS1 is accumulated during late gametogenesis and is localized on the plasma membrane of generative cells. In addition, Arabidopsis thaliana GCS1 mutant gametes fail to fuse, resulting in male sterility and suggesting that GCS1 is a critical fertilization factor in angiosperms.
Collapse
Affiliation(s)
- Toshiyuki Mori
- Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Nishiikebukuro 3-34-1, Toshima-ku, Tokyo 171-8501, Japan.
| | | | | | | |
Collapse
|
17
|
Isolation of two populations of sperm cells and microelectrophoresis of pairs of sperm cells from pollen tubes of tobacco (Nicotiana tabacum). ACTA ACUST UNITED AC 2005. [DOI: 10.1007/s00497-005-0248-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Serpe MD, Nothnagel EA. Arabinogalactan-proteins in the Multiple Domains of the Plant Cell Surface. ADVANCES IN BOTANICAL RESEARCH 1999:207-289. [PMID: 0 DOI: 10.1016/s0065-2296(08)60229-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|