Johnstone EV, Mayordomo N, Mausolf EJ. Discovery, nuclear properties, synthesis and applications of technetium-101.
Commun Chem 2022;
5:131. [PMID:
36697915 PMCID:
PMC9814870 DOI:
10.1038/s42004-022-00746-9]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/29/2022] [Indexed: 01/28/2023] Open
Abstract
Technetium-101 (101Tc) has been poorly studied in comparison with other Tc isotopes, although it was first identified over ~80 years ago shortly after the discovery of the element Tc itself. Its workable half-life and array of production modes, i.e., light/heavy particle reactions, fission, fusion-evaporation, etc., allow it to be produced and isolated using an equally diverse selection of chemical separation pathways. The inherent nuclear properties of 101Tc make it important for research and applications related to radioanalytical tracer studies, as a fission signature, fusion materials, fission reactor fuels, and potentially as a radioisotope for nuclear medicine. In this review, an aggregation of the known literature concerning the chemical, nuclear, and physical properties of 101Tc and some its applications are presented. This work aims at providing an up-to-date and first-of-its-kind overview of 101Tc that could be of importance for further development of the fundamental and applied nuclear and radiochemistry of 101Tc.
Collapse