1
|
Romanenko SA, Perelman PL, Trifonov VA, Serdyukova NA, Li T, Fu B, O’Brien PCM, Ng BL, Nie W, Liehr T, Stanyon R, Graphodatsky AS, Yang F. A First Generation Comparative Chromosome Map between Guinea Pig (Cavia porcellus) and Humans. PLoS One 2015; 10:e0127937. [PMID: 26010445 PMCID: PMC4444286 DOI: 10.1371/journal.pone.0127937] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/21/2015] [Indexed: 11/19/2022] Open
Abstract
The domesticated guinea pig, Cavia porcellus (Hystricomorpha, Rodentia), is an important laboratory species and a model for a number of human diseases. Nevertheless, genomic tools for this species are lacking; even its karyotype is poorly characterized. The guinea pig belongs to Hystricomorpha, a widespread and important group of rodents; so far the chromosomes of guinea pigs have not been compared with that of other hystricomorph species or with any other mammals. We generated full sets of chromosome-specific painting probes for the guinea pig by flow sorting and microdissection, and for the first time, mapped the chromosomal homologies between guinea pig and human by reciprocal chromosome painting. Our data demonstrate that the guinea pig karyotype has undergone extensive rearrangements: 78 synteny-conserved human autosomal segments were delimited in the guinea pig genome. The high rate of genome evolution in the guinea pig may explain why the HSA7/16 and HSA16/19 associations presumed ancestral for eutherians and the three syntenic associations (HSA1/10, 3/19, and 9/11) considered ancestral for rodents were not found in C. porcellus. The comparative chromosome map presented here is a starting point for further development of physical and genetic maps of the guinea pig as well as an aid for genome assembly assignment to specific chromosomes. Furthermore, the comparative mapping will allow a transfer of gene map data from other species. The probes developed here provide a genomic toolkit, which will make the guinea pig a key species to unravel the evolutionary biology of the Hystricomorph rodents.
Collapse
Affiliation(s)
- Svetlana A. Romanenko
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- * E-mail: (SAR); (FY)
| | - Polina L. Perelman
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Vladimir A. Trifonov
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | - Tangliang Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, PR China
| | - Beiyuan Fu
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Patricia C. M. O’Brien
- Centre for Veterinary Science, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Bee L. Ng
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Wenhui Nie
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, PR China
| | - Thomas Liehr
- Jena University Hospital, Institute of Human Genetics and Anthropology, Jena, Germany
| | - Roscoe Stanyon
- Department of Biology, University of Florence, Florence, Italy
| | - Alexander S. Graphodatsky
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Fengtang Yang
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
- * E-mail: (SAR); (FY)
| |
Collapse
|
3
|
Gava A, Freitas T, Olimpio J. A new karyotype for the genus Cavia from a southern island of Brazil (Rodentia - Caviidae). Genet Mol Biol 1998. [DOI: 10.1590/s1415-47571998000100013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intraspecific karyotype variation in mammal species is very common and often caused by centromeric fusion of acrocentric chromosomes. We describe here a new karyotype 2n = 62 (FN = 112) for the genus Cavia from the Moleques do Sul Islands, of the southern coast of Brazil. We analyzed two male and four female karyotypes that had twenty-four biarmed pairs and six pairs of acrocentric chromosomes. The sexual pair consisted of a metacentric X-chromosome and a large acrocentric Y. C-bands were found in the centromeric and pericentromeric regions of almost all chromosomes, except for some small biarmed and acrocentric ones. Nucleolus organizer regions appeared in two biarmed chromosomes, and G-banding patterns were also seen.
Collapse
Affiliation(s)
- A. Gava
- Universidade Federal do Rio Grande do Sul
| | | | | |
Collapse
|