1
|
Community Vertical Composition of the Laguna Negra Hypersaline Microbial Mat, Puna Region (Argentinean Andes). BIOLOGY 2022; 11:biology11060831. [PMID: 35741352 PMCID: PMC9220024 DOI: 10.3390/biology11060831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
The Altiplano-Puna region is a high-altitude plateau in South America characterized by extreme conditions, including the highest UV incidence on Earth. The Laguna Negra is a hypersaline lake located in the Catamarca Province, northwestern Argentina, where stromatolites and other microbialites are found, and where life is mostly restricted to microbial mats. In this study, a particular microbial mat that covers the shore of the lake was explored, to unravel its layer-by-layer vertical structure in response to the environmental stressors therein. Microbial community composition was assessed by high-throughput 16S rRNA gene sequencing and pigment content analyses, complemented with microscopy tools to characterize its spatial arrangement within the mat. The top layer of the mat has a remarkable UV-tolerance feature, characterized by the presence of Deinococcus-Thermus and deinoxanthin, which might reflect a shielding strategy to cope with high UV radiation. Chloroflexi and Deltaproteobacteria were abundant in the second and third underlying layers, respectively. The bottom layer harbors copious Halanaerobiaeota. Subspherical aggregates composed of calcite, extracellular polymeric substances, abundant diatoms, and other microorganisms were observed all along the mat as the main structural component. This detailed study provides insights into the strategies of microbial communities to thrive under high UV radiation and hypersalinity in high-altitude lakes in the Altiplano-Puna region.
Collapse
|
2
|
Haas S, de Beer D, Klatt JM, Fink A, Rench RM, Hamilton TL, Meyer V, Kakuk B, Macalady JL. Low-Light Anoxygenic Photosynthesis and Fe-S-Biogeochemistry in a Microbial Mat. Front Microbiol 2018; 9:858. [PMID: 29755448 PMCID: PMC5934491 DOI: 10.3389/fmicb.2018.00858] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/13/2018] [Indexed: 11/24/2022] Open
Abstract
We report extremely low-light-adapted anoxygenic photosynthesis in a thick microbial mat in Magical Blue Hole, Abaco Island, The Bahamas. Sulfur cycling was reduced by iron oxides and organic carbon limitation. The mat grows below the halocline/oxycline at 30 m depth on the walls of the flooded sinkhole. In situ irradiance at the mat surface on a sunny December day was between 0.021 and 0.084 μmol photons m-2 s-1, and UV light (<400 nm) was the most abundant part of the spectrum followed by green wavelengths (475–530 nm). We measured a light-dependent carbon uptake rate of 14.5 nmol C cm-2 d-1. A 16S rRNA clone library of the green surface mat layer was dominated (74%) by a cluster (>97% sequence identity) of clones affiliated with Prosthecochloris, a genus within the green sulfur bacteria (GSB), which are obligate anoxygenic phototrophs. Typical photopigments of brown-colored GSB, bacteriochlorophyll e and (β-)isorenieratene, were abundant in mat samples and their absorption properties are well-adapted to harvest light in the available green and possibly even UV-A spectra. Sulfide from the water column (3–6 μmol L-1) was the main source of sulfide to the mat as sulfate reduction rates in the mats were very low (undetectable-99.2 nmol cm-3 d-1). The anoxic water column was oligotrophic and low in dissolved organic carbon (175–228 μmol L-1). High concentrations of pyrite (FeS2; 1–47 μmol cm-3) together with low microbial process rates (sulfate reduction, CO2 fixation) indicate that the mats function as net sulfide sinks mainly by abiotic processes. We suggest that abundant Fe(III) (4.3–22.2 μmol cm-3) is the major source of oxidizing power in the mat, and that abiotic Fe-S-reactions play the main role in pyrite formation. Limitation of sulfate reduction by low organic carbon availability along with the presence of abundant sulfide-scavenging iron oxides considerably slowed down sulfur cycling in these mats.
Collapse
Affiliation(s)
- Sebastian Haas
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,Department of Oceanography, Dalhousie University, Halifax, NS, Canada
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Judith M Klatt
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Artur Fink
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Rebecca McCauley Rench
- Geosciences Department, Pennsylvania State University, University Park, PA, United States
| | - Trinity L Hamilton
- Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, MN, United States
| | - Volker Meyer
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Brian Kakuk
- Bahamas Caves Research Foundation, Marsh Harbour, Bahamas
| | - Jennifer L Macalady
- Geosciences Department, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
3
|
Thweatt JL, Ferlez BH, Golbeck JH, Bryant DA. BciD Is a Radical S-Adenosyl-l-methionine (SAM) Enzyme That Completes Bacteriochlorophyllide e Biosynthesis by Oxidizing a Methyl Group into a Formyl Group at C-7. J Biol Chem 2016; 292:1361-1373. [PMID: 27994052 DOI: 10.1074/jbc.m116.767665] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/12/2016] [Indexed: 01/05/2023] Open
Abstract
Green bacteria are chlorophotorophs that synthesize bacteriochlorophyll (BChl) c, d, or e, which assemble into supramolecular, nanotubular structures in large light-harvesting structures called chlorosomes. The biosynthetic pathways of these chlorophylls are known except for one reaction. Null mutants of bciD, which encodes a putative radical S-adenosyl-l-methionine (SAM) protein, are unable to synthesize BChl e but accumulate BChl c; however, it is unknown whether BciD is sufficient to convert BChl c (or its precursor, bacteriochlorophyllide (BChlide) c) into BChl e (or BChlide e). To determine the function of BciD, we expressed the bciD gene of Chlorobaculum limnaeum strain DSMZ 1677T in Escherichia coli and purified the enzyme under anoxic conditions. Electron paramagnetic resonance spectroscopy of BciD indicated that it contains a single [4Fe-4S] cluster. In assays containing SAM, BChlide c or d, and sodium dithionite, BciD catalyzed the conversion of SAM into 5'-deoxyadenosine and BChlide c or d into BChlide e or f, respectively. Our analyses also identified intermediates that are proposed to be 71-OH-BChlide c and d Thus, BciD is a radical SAM enzyme that converts the methyl group of BChlide c or d into the formyl group of BChlide e or f This probably occurs by a mechanism involving consecutive hydroxylation reactions of the C-7 methyl group to form a geminal diol intermediate, which spontaneously dehydrates to produce the final products, BChlide e or BChlide f The demonstration that BciD is sufficient to catalyze the conversion of BChlide c into BChlide e completes the biosynthetic pathways for all "Chlorobium chlorophylls."
Collapse
Affiliation(s)
| | - Bryan H Ferlez
- From the Departments of Biochemistry and Molecular Biology and
| | - John H Golbeck
- From the Departments of Biochemistry and Molecular Biology and.,Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Donald A Bryant
- From the Departments of Biochemistry and Molecular Biology and .,the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
4
|
Pelagic photoferrotrophy and iron cycling in a modern ferruginous basin. Sci Rep 2015; 5:13803. [PMID: 26348272 PMCID: PMC4562300 DOI: 10.1038/srep13803] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/05/2015] [Indexed: 11/08/2022] Open
Abstract
Iron-rich (ferruginous) ocean chemistry prevailed throughout most of Earth’s early history. Before the evolution and proliferation of oxygenic photosynthesis, biological production in the ferruginous oceans was likely driven by photoferrotrophic bacteria that oxidize ferrous iron {Fe(II)} to harness energy from sunlight, and fix inorganic carbon into biomass. Photoferrotrophs may thus have fuelled Earth’s early biosphere providing energy to drive microbial growth and evolution over billions of years. Yet, photoferrotrophic activity has remained largely elusive on the modern Earth, leaving models for early biological production untested and imperative ecological context for the evolution of life missing. Here, we show that an active community of pelagic photoferrotrophs comprises up to 30% of the total microbial community in illuminated ferruginous waters of Kabuno Bay (KB), East Africa (DR Congo). These photoferrotrophs produce oxidized iron {Fe(III)} and biomass, and support a diverse pelagic microbial community including heterotrophic Fe(III)-reducers, sulfate reducers, fermenters and methanogens. At modest light levels, rates of photoferrotrophy in KB exceed those predicted for early Earth primary production, and are sufficient to generate Earth’s largest sedimentary iron ore deposits. Fe cycling, however, is efficient, and complex microbial community interactions likely regulate Fe(III) and organic matter export from the photic zone.
Collapse
|
5
|
Fauteux L, Cottrell MT, Kirchman DL, Borrego CM, Garcia-Chaves MC, del Giorgio PA. Patterns in Abundance, Cell Size and Pigment Content of Aerobic Anoxygenic Phototrophic Bacteria along Environmental Gradients in Northern Lakes. PLoS One 2015; 10:e0124035. [PMID: 25927833 PMCID: PMC4415779 DOI: 10.1371/journal.pone.0124035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/10/2015] [Indexed: 11/19/2022] Open
Abstract
There is now evidence that aerobic anoxygenic phototrophic (AAP) bacteria are widespread across aquatic systems, yet the factors that determine their abundance and activity are still not well understood, particularly in freshwaters. Here we describe the patterns in AAP abundance, cell size and pigment content across wide environmental gradients in 43 temperate and boreal lakes of Québec. AAP bacterial abundance varied from 1.51 to 5.49 x 105 cells mL-1, representing <1 to 37% of total bacterial abundance. AAP bacteria were present year-round, including the ice-cover period, but their abundance relative to total bacterial abundance was significantly lower in winter than in summer (2.6% and 7.7%, respectively). AAP bacterial cells were on average two-fold larger than the average bacterial cell size, thus AAP cells made a greater relative contribution to biomass than to abundance. Bacteriochlorophyll a (BChla) concentration varied widely across lakes, and was not related to AAP bacterial abundance, suggesting a large intrinsic variability in the cellular pigment content. Absolute and relative AAP bacterial abundance increased with dissolved organic carbon (DOC), whereas cell-specific BChla content was negatively related to chlorophyll a (Chla). As a result, both the contribution of AAP bacteria to total prokaryotic abundance, and the cell-specific BChla pigment content were positively correlated with the DOC:Chla ratio, both peaking in highly colored, low-chlorophyll lakes. Our results suggest that photoheterotrophy might represent a significant ecological advantage in highly colored, low-chlorophyll lakes, where DOC pool is chemically and structurally more complex.
Collapse
Affiliation(s)
- Lisa Fauteux
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Département des sciences biologiques, Université du Québec à Montréal, CP 8888, Montréal, Québec, Canada
| | - Matthew T. Cottrell
- School of Marine Science and Policy, University of Delaware, 700 Pilottown Rd., Lewes, DE 19958, United States of America
| | - David L. Kirchman
- School of Marine Science and Policy, University of Delaware, 700 Pilottown Rd., Lewes, DE 19958, United States of America
| | - Carles M. Borrego
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Campus de Montilivi, E-17071, Girona, Spain
| | - Maria Carolina Garcia-Chaves
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Département des sciences biologiques, Université du Québec à Montréal, CP 8888, Montréal, Québec, Canada
| | - Paul A. del Giorgio
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Département des sciences biologiques, Université du Québec à Montréal, CP 8888, Montréal, Québec, Canada
| |
Collapse
|
6
|
Rasuk MC, Kurth D, Flores MR, Contreras M, Novoa F, Poire D, Farias ME. Microbial characterization of microbial ecosystems associated to evaporites domes of gypsum in Salar de Llamara in Atacama desert. MICROBIAL ECOLOGY 2014; 68:483-494. [PMID: 24859438 DOI: 10.1007/s00248-014-0431-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 05/01/2014] [Indexed: 06/03/2023]
Abstract
The Central Andes in northern Chile contains a large number of closed basins whose central depression is occupied by saline lakes and salt crusts (salars). One of these basins is Salar de Llamara (850 m a.s.l.), where large domed structures of seemingly evaporitic origin forming domes can be found. In this work, we performed a detailed microbial characterization of these domes. Mineralogical studies revealed gypsum (CaSO(4)) as a major component. Microbial communities associated to these structures were analysed by 454 16S rDNA amplicon sequencing and compared between winter and summer seasons. Bacteroidetes Proteobacteria and Planctomycetes remained as the main phylogenetic groups, an increased diversity was found in winter. Comparison of the upper air-exposed part and the lower water-submerged part of the domes in both seasons showed little variation in the upper zone, showing a predominance of Chromatiales (Gammaproteobacteria), Rhodospirillales (Alphaproteobacteria), and Sphingobacteriales (Bacteroidetes). However, the submerged part showed marked differences between seasons, being dominated by Proteobacteria (Alpha and Gamma) and Verrucomicrobia in summer, but with more diverse phyla found in winter. Even though not abundant by sequence, Cyanobacteria were visually identified by scanning electron microscopy (SEM), which also revealed the presence of diatoms. Photosynthetic pigments were detected by high-performance liquid chromatography, being more diverse on the upper photosynthetic layer. Finally, the system was compared with other endoevaporite, mats microbialite and Stromatolites microbial ecosystems, showing higher similitude with evaporitic ecosystems from Atacama and Guerrero Negro. This environment is of special interest for extremophile studies because microbial life develops associated to minerals in the driest desert all over the world. Nevertheless, it is endangered by mining activity associated to copper and lithium extraction; thus, its environmental protection preservation is strongly encouraged.
Collapse
Affiliation(s)
- Maria Cecilia Rasuk
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, Tucumán, Argentina
| | | | | | | | | | | | | |
Collapse
|
7
|
Farías ME, Contreras M, Rasuk MC, Kurth D, Flores MR, Poiré DG, Novoa F, Visscher PT. Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialites in thalassic wetlands: Tebenquiche and La Brava, Salar de Atacama, Chile. Extremophiles 2014; 18:311-29. [DOI: 10.1007/s00792-013-0617-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/05/2013] [Indexed: 02/01/2023]
|
8
|
Ferrera I, Borrego CM, Salazar G, Gasol JM. Marked seasonality of aerobic anoxygenic phototrophic bacteria in the coastal NW Mediterranean Sea as revealed by cell abundance, pigment concentration and pyrosequencing of pufM gene. Environ Microbiol 2013; 16:2953-65. [PMID: 24131493 DOI: 10.1111/1462-2920.12278] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/01/2013] [Accepted: 09/06/2013] [Indexed: 11/28/2022]
Abstract
The abundance and diversity of aerobic anoxygenic phototrophs (AAPs) were studied for a year cycle at the Blanes Bay Microbial Observatory (NW Mediterranean) and their potential links to an array of environmental variables were explored. Cell numbers were low in winter and peaked in summer, showing a marked seasonality that positively correlated with day length and light at the surface. Bacteriochlorophyll a concentration, their light-harvesting pigment, was only detected between April and October, and pigment cell quota showed large variations during this period. Pyrosequencing analysis of the pufM gene revealed that the most abundant operational taxonomic units (OTUs) were affiliated to phylogroup K (Gammaproteobacteria) and uncultured phylogroup C, although they were outnumbered by alphaproteobacterial OTUs in spring. Overall, richness was higher in winter than in summer, showing an opposite trend to abundance and day length. Clustering of samples by multivariate analyses showed a clear seasonality that suggests a succession of different AAP subpopulations over time. Temperature, chlorophyll a and day length were the environmental drivers that best explained the distribution of AAP assemblages. These results indicate that AAP bacteria are highly dynamic and undergo seasonal variations in diversity and abundance mostly dictated by environmental conditions as exemplified by light availability.
Collapse
Affiliation(s)
- Isabel Ferrera
- Department de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, Spain
| | | | | | | |
Collapse
|
9
|
Identification of an 8-vinyl reductase involved in bacteriochlorophyll biosynthesis in Rhodobacter sphaeroides and evidence for the existence of a third distinct class of the enzyme. Biochem J 2013; 450:397-405. [PMID: 23252506 DOI: 10.1042/bj20121723] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purple phototrophic bacterium Rhodobacter sphaeroides utilises bacteriochlorophyll a for light harvesting and photochemistry. The synthesis of this photopigment includes the reduction of a vinyl group at the C8 position to an ethyl group, catalysed by a C8-vinyl reductase. An active form of this enzyme has not been identified in R. sphaeroides, but its genome contains two candidate ORFs (open reading frames) similar to those reported to encode C8-vinyl reductases in the closely related Rhodobacter capsulatus (bchJ), and in plants and green sulfur bacteria (rsp_3070). To determine which gene encodes the active enzyme, knock-out mutants in both genes were constructed. Surprisingly, mutants in which one or both genes were deleted still retained the ability to synthesize C8-ethyl bacteriochlorophyll. These genes were subsequently expressed in a cyanobacterial mutant that cannot synthesize C8-ethyl chlorophyll a. R. sphaeroides rsp_3070 was able to restore synthesis of the WT (wild-type) C8-ethyl chlorophyll a in the mutant, whereas bchJ did not. The results of the present study demonstrate that Rsp_3070 is a functional C8-vinyl reductase and that R. sphaeroides utilises at least two enzymes to catalyse this reaction, indicating the existence of a third class, while there remains no direct evidence for the activity of BchJ as a C8-vinyl reductase.
Collapse
|
10
|
Mizoguchi T, Harada J, Yoshitomi T, Tamiaki H. A variety of glycolipids in green photosynthetic bacteria. PHOTOSYNTHESIS RESEARCH 2013; 114:179-188. [PMID: 23420454 DOI: 10.1007/s11120-013-9802-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/08/2013] [Indexed: 06/01/2023]
Abstract
The compositions of glycolipids in the following seven strains of green photosynthetic bacteria were investigated at the molecular level using LC-MS coupled with an evaporative light scattering detector: Chlorobium (Chl.) limicola strains Larsen (30 °C as the optimal cultivation temperature) and DSM245 (30 °C), Chlorobaculum (Cba.) tepidum strain ATCC49652 (45 °C), Cba. parvum strain NCIB8327 (30 °C), Cba. limnaeum strain 1549 (30 °C), Chl. phaeovibrioides DSM269 (30 °C), and Chloroflexus (Cfl.) aurantiacus strain J-10-fl (55 °C). Dependence of the molecular structures of glycolipids including the chain-length of their acyl groups upon bacterial cultivation temperatures was clearly observed. The organisms with their optimal temperatures of 30, 45, and 55 °C dominantly accumulated glycolipids possessing the acyl chains in the range of C(15)-C(16), C(16)-C(17), and C(18)-C(20), respectively. Cba. tepidum with an optimal temperature of 45 °C preferred the insertion of a methylene group to produce finally a C(17)-cyclopropane chain. Cfl. aurantiacus cultured optimally at 55 °C caused a drastic increase in the chain-length. Notably, the length of such acyl groups corresponded to that of the esterifying chain in the 17-propionate residues of self-aggregative bacteriochlorophylls-c/d/e, indicating stabilization of their supramolecular structures through hydrophobic interactions among those hydrocarbon chains. Based on the detailed compositions of glycolipids, a survival strategy of green photosynthetic bacteria grown in the wide range of temperatures is discussed.
Collapse
Affiliation(s)
- Tadashi Mizoguchi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | | | | | | |
Collapse
|
11
|
Farías ME, Rascovan N, Toneatti DM, Albarracín VH, Flores MR, Poiré DG, Collavino MM, Aguilar OM, Vazquez MP, Polerecky L. The discovery of stromatolites developing at 3570 m above sea level in a high-altitude volcanic lake Socompa, Argentinean Andes. PLoS One 2013; 8:e53497. [PMID: 23308236 PMCID: PMC3538587 DOI: 10.1371/journal.pone.0053497] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/29/2012] [Indexed: 11/24/2022] Open
Abstract
We describe stromatolites forming at an altitude of 3570 m at the shore of a volcanic lake Socompa, Argentinean Andes. The water at the site of stromatolites formation is alkaline, hypersaline, rich in inorganic nutrients, very rich in arsenic, and warm (20-24°C) due to a hydrothermal input. The stromatolites do not lithify, but form broad, rounded and low-domed bioherms dominated by diatom frustules and aragonite micro-crystals agglutinated by extracellular substances. In comparison to other modern stromatolites, they harbour an atypical microbial community characterized by highly abundant representatives of Deinococcus-Thermus, Rhodobacteraceae, Desulfobacterales and Spirochaetes. Additionally, a high proportion of the sequences that could not be classified at phylum level showed less than 80% identity to the best hit in the NCBI database, suggesting the presence of novel distant lineages. The primary production in the stromatolites is generally high and likely dominated by Microcoleus sp. Through negative phototaxis, the location of these cyanobacteria in the stromatolites is controlled by UV light, which greatly influences their photosynthetic activity. Diatoms, dominated by Amphora sp., are abundant in the anoxic, sulfidic and essentially dark parts of the stromatolites. Although their origin in the stromatolites is unclear, they are possibly an important source of anaerobically degraded organic matter that induces in situ aragonite precipitation. To the best of our knowledge, this is so far the highest altitude with documented actively forming stromatolites. Their generally rich, diverse and to a large extent novel microbial community likely harbours valuable genetic and proteomic reserves, and thus deserves active protection. Furthermore, since the stromatolites flourish in an environment characterized by a multitude of extremes, including high exposure to UV radiation, they can be an excellent model system for studying microbial adaptations under conditions that, at least in part, resemble those during the early phase of life evolution on Earth.
Collapse
Affiliation(s)
- María E. Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Nicolás Rascovan
- Instituto de Agrobiotecnologia Rosario (INDEAR), Rosario, Santa Fe, Argentina
| | - Diego M. Toneatti
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Virginia H. Albarracín
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, San Miguel de Tucumán, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
- Max-Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - María R. Flores
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Daniel G. Poiré
- Centro de Investigaciones Geológicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Mónica M. Collavino
- Instituto de Biotecnología y Biología Molecular (IBBM), Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - O. Mario Aguilar
- Instituto de Biotecnología y Biología Molecular (IBBM), Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Martin P. Vazquez
- Instituto de Agrobiotecnologia Rosario (INDEAR), Rosario, Santa Fe, Argentina
| | - Lubos Polerecky
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
12
|
O'Dell WB, Beatty KJ, Kuo-Hsiang Tang J, Blankenship RE, Urban VS, O'Neill H. Sol–gel entrapped light harvesting antennas: immobilization and stabilization of chlorosomes for energy harvesting. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm34357f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Vila X, Cristina XP, Abella CA, Hurley JP. Effects of gilvin on the composition and dynamics of metalimnetic communities of phototrophic bacteria in freshwater North-American lakes. J Appl Microbiol 2011; 85 Suppl 1:138S-150S. [PMID: 21182703 DOI: 10.1111/j.1365-2672.1998.tb05293.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The spectral distribution of light reaching the populations of phototrophic bacteria in the metalimnion of stratified lakes is a selective factor determining the community composition. At deep metalimnia, light spectra are enriched in photons of the central part of the spectrum (500-600 nm) and benefit Chromatiaceae, brown-coloured Chlorobiaceae and phyco-erythrine-containing cyanobacteria. Their carotenoids (okenone, spiriloxanthine, isorenieratene) and phycoerythrines allow these phototrophic bacteria to use light from the narrow central spectral wavebands. Otherwise, shallow metalimnetic communities receive light from a wide range (400-800 nm) and their composition is more diverse and usually enriched in green-coloured Chlorobiaceae, which are unable to take advantage of the central part of the spectrum. Gilvin compounds (humic substances dissolved in water), have strong effects on light absorption, especially at shorter wavelengths. Therefore, light spectra in lakes with high gilvin contents are enriched in photons of long wavelengths (> 600 nm). Several Wisconsin lakes with different gilvin contents were studied during the period of summer stratification in 1994. Spectral distribution of light reaching their metalimnia changed with increasing gilvin contents (measured as g(440) ). In the latter, phototrophic metalimnetic bacterial communities were absolutely dominated by green-coloured Chlorobiaceae. Intermediate lakes could experiment changes on their community composition depending on variations in gilvin content, as happened in Little Long lake. The dynamics of this lake was studied during summer 1995. The ratio of green-coloured species in respect to brown-coloured species increased after a sudden increase of gilvin due to strong rainfall. These results agree with the photosynthetic advantage of green-coloured Chlorobiaceae under red-light illumination, inferred from laboratory experiments, and suggest a bacteriochlorophyll-dependent, light-harvesting strategy of these phototrophic sulphur bacteria.
Collapse
Affiliation(s)
- X Vila
- University of Girona, Institute of Aquatic Ecology, Girona, Spain.
| | | | | | | |
Collapse
|
14
|
Bühring SI, Sievert SM, Jonkers HM, Ertefai T, Elshahed MS, Krumholz LR, Hinrichs KU. Insights into chemotaxonomic composition and carbon cycling of phototrophic communities in an artesian sulfur-rich spring (Zodletone, Oklahoma, USA), a possible analog for ancient microbial mat systems. GEOBIOLOGY 2011; 9:166-179. [PMID: 21244620 DOI: 10.1111/j.1472-4669.2010.00268.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Zodletone spring in Oklahoma is a unique environment with high concentrations of dissolved-sulfide (10 mm) and short-chain gaseous alkanes, exhibiting characteristics that are reminiscent of conditions that are thought to have existed in Earth's history, in particular the late Archean and early-to-mid Proterozoic. Here, we present a process-oriented investigation of the microbial community in two distinct mat formations at the spring source, (1) the top of the sediment in the source pool and (2) the purple streamers attached to the side walls. We applied a combination of pigment and lipid biomarker analyses, while functional activities were investigated in terms of oxygen production (microsensor analysis) and carbon utilization ((13)C incorporation experiments). Pigment analysis showed cyanobacterial pigments, in addition to pigments from purple sulfur bacteria (PSB), green sulfur bacteria (GSB) and Chloroflexus-like bacteria (CLB). Analysis of intact polar lipids (IPLs) in the source sediment confirmed the presence of phototrophic organisms via diacylglycerol phospholipids and betaine lipids, whereas glyceroldialkylglyceroltetraether additionally indicated the presence of archaea. No archaeal IPLs were found in the purple streamers, which were strongly dominated by betaine lipids. (13)C-bicarbonate- and -acetate-labeling experiments indicated cyanobacteria as predominant phototrophs in the source sediment, carbon was actively fixed by PSB/CLB/GSB in purple streamers by using near infrared light. Despite the presence of cyanobacteria, no oxygen could be detected in the presence of light, suggesting anoxygenic photosynthesis as the major metabolic process at this site. Our investigations furthermore indicated photoheterotrophy as an important process in both habitats. We obtained insights into a syntrophically operating phototrophic community in an ecosystem that bears resemblance to early Earth conditions, where cyanobacteria constitute an important contributor to carbon fixation despite the presence of high sulfide concentrations.
Collapse
Affiliation(s)
- S I Bühring
- Department of Geosciences, Universität Bremen, Bremen, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Self-aggregates of natural chlorophylls and their synthetic analogues in aqueous media for making light-harvesting systems. Coord Chem Rev 2010. [DOI: 10.1016/j.ccr.2009.12.027] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Novel green sulfur bacteria phylotypes detected in saline environments: ecophysiological characters versus phylogenetic taxonomy. Antonie van Leeuwenhoek 2010; 97:419-31. [DOI: 10.1007/s10482-010-9420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 02/08/2010] [Indexed: 11/25/2022]
|
17
|
Gomez Maqueo Chew A, Frigaard NU, Bryant DA. Mutational analysis of three bchH paralogs in (bacterio-)chlorophyll biosynthesis in Chlorobaculum tepidum. PHOTOSYNTHESIS RESEARCH 2009; 101:21-34. [PMID: 19568953 DOI: 10.1007/s11120-009-9460-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 06/10/2009] [Indexed: 05/28/2023]
Abstract
The first committed step in the biosynthesis of (bacterio-)chlorophyll is the insertion of Mg2+ into protoporphyrin IX by Mg-chelatase. In all known (B)Chl-synthesizing organisms, Mg-chelatase is encoded by three genes that are homologous to bchH, bchD, and bchI of Rhodobacter spp. The genomes of all sequenced strains of green sulfur bacteria (Chlorobi) encode multiple bchH paralogs, and in the genome of Chlorobaculum tepidum, there are three bchH paralogs, denoted CT1295 (bchT), CT1955 (bchS), and CT1957 (bchH). Cba. tepidum mutants lacking one or two of these paralogs were constructed and characterized. All of the mutants lacking only one of these BchH homologs, as well as bchS bchT and bchH bchT double mutants, which can only produce BchH or BchS, respectively, were viable. However, attempts to construct a bchH bchS double mutant, in which only BchT was functional, were consistently unsuccessful. This result suggested that BchT alone is unable to support the minimal (B)Chl synthesis requirements of cells required for viability. The pigment compositions of the various mutant strains varied significantly. The BChl c content of the bchS mutant was only approximately 10% of that of the wild type, and this mutant excreted large amounts of protoporphyrin IX into the growth medium. The observed differences in BChl c production of the mutant strains were consistent with the hypothesis that the three BchH homologs function in end product regulation and/or substrate channeling of intermediates in the BChl c biosynthetic pathway.
Collapse
Affiliation(s)
- Aline Gomez Maqueo Chew
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, S-235 Frear Building, PA 16802, University Park, USA
| | | | | |
Collapse
|
18
|
Saccà A, Borrego CM, Renda R, Triadó-Margarit X, Bruni V, Guglielmo L. Predation impact of ciliated and flagellated protozoa during a summer bloom of brown sulfur bacteria in a meromictic coastal lake. FEMS Microbiol Ecol 2009; 70:42-53. [PMID: 19622068 DOI: 10.1111/j.1574-6941.2009.00735.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Anaerobic phagotrophic protozoa may play an important role in the carbon flux of chemically stratified environments, especially when phototrophic sulfur bacteria account for a high proportion of the primary production. To test this assumption, we investigated the vertical and temporal distribution of microbial heterotrophs and of autotrophic picoplankton throughout the water column of the meromictic coastal lake Faro (Sicily, Italy), in the summer of 2004, coinciding with a bloom of brown-colored green sulfur bacteria. We also assessed the grazing impact of ciliated and flagellated protozoa within the sulfur bacteria plate using a modification of the fluorescently labeled bacteria uptake approach, attempting to minimize the biases intrinsic to the technique and to preserve the in situ anoxic conditions. Significant correlations were observed between ciliate biomass and bacteriochlorophyll e concentration, and between heterotrophic nanoflagellate biomass and chlorophyll a concentration in the water column. The major predators of anaerobic picoplankton were pleuronematine ciliates and cryptomonad flagellates, with clearances of 26.6 and 9.5 nL per cell h(-1), respectively, and a cumulative impact on the picoplankton gross growth rate ranging between 36% and 72%. We concluded that protozoan grazing channels a large proportion of anaerobic picoplankton production to higher trophic levels without restraining photosynthetic bacteria productivity.
Collapse
Affiliation(s)
- Alessandro Saccà
- Department of Animal Biology and Marine Ecology, University of Messina, Messina, Italy.
| | | | | | | | | | | |
Collapse
|
19
|
Serra T, Borrego C, Quintana X, Calderer L, López R, Colomer J. Quantification of the Effect of Nonphotochemical Quenching on the Determination ofIn VivoChlafrom Phytoplankton Along the Water Column of a Freshwater Reservoir. Photochem Photobiol 2009; 85:321-31. [DOI: 10.1111/j.1751-1097.2008.00441.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Casamayor EO, Ferrera I, Cristina X, Borrego CM, Gasol JM. Flow cytometric identification and enumeration of photosynthetic sulfur bacteria and potential for ecophysiological studies at the single-cell level. Environ Microbiol 2007; 9:1969-85. [PMID: 17635543 DOI: 10.1111/j.1462-2920.2007.01313.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We show the potential of flow cytometry as a fast tool for population identification and enumeration of photosynthetic sulfur bacteria. Purple (PSB) and green sulfur bacteria (GSB) oxidize hydrogen sulfide to elemental sulfur that can act as storage compound to be further oxidized to sulfate generating the reducing power required for growth. Both groups have different elemental sulfur allocation strategies: whereas PSB store elemental sulfur as intracellular inclusions, GSB allocate sulfur globules externally. We used well-characterized laboratory strains and complex natural photosynthetic populations developing in a sharply stratified meromictic lake to show that PSB and GSB could be detected, differentiated and enumerated in unstained samples using a blue laser-based flow cytometer. Variations in cell-specific pigment content and the dynamics of sulfur accumulation, both intra- and extracellularly, were also detected in flow cytometric plots as sulfur accumulation changed the light scatter characteristics of the cells. These data were used to show the potential for studies on the metabolic status and the rate of activity at the single-cell level. Flow cytometric identification and enumeration resulted in faster and more precise analyses than previous approaches, and may open the door to more complex ecophysiological experiments with photosynthetic sulfur bacteria in mixed cultures and natural environments.
Collapse
Affiliation(s)
- Emilio O Casamayor
- Unitat de Limnologia, Department of Continental Ecology, Centre d'Estudis Avançats de Blanes (CSIC), E-17300 Blanes, Spain.
| | | | | | | | | |
Collapse
|
21
|
Olson TL, van de Meene AML, Francis JN, Pierson BK, Blankenship RE. Pigment analysis of "Candidatus Chlorothrix halophila," a green filamentous anoxygenic phototrophic bacterium. J Bacteriol 2007; 189:4187-95. [PMID: 17369304 PMCID: PMC1913391 DOI: 10.1128/jb.01712-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 02/27/2007] [Indexed: 11/20/2022] Open
Abstract
The pigment composition of "Candidatus Chlorothrix halophila," a filamentous anoxygenic phototrophic bacterium found in Baja California Sur, Mexico, was determined. Previous work showed that bacteriochlorophyll c (BChl c) was the major pigment in "Ca. Chlorothrix halophila," but it was not clear if this bacterium also contains BChl a (J. A. Klappenbach and B. K. Pierson, Arch. Microbiol. 181:17-25, 2004). Here we show that in addition to BChl c, a small amount of a pigment that is spectrally indistinguishable from BChl a is present in cell extracts of "Ca. Chlorothrix halophila." Nevertheless, the BChl a-like pigment from "Ca. Chlorothrix halophila" has a different molecular weight and a different high-performance liquid chromatography elution time than BChl a from other photosynthetic bacteria. Based on mass spectrometry and other spectroscopic analysis, we determined that the BChl a-like pigment in "Ca. Chlorothrix halophila" contains a tetrahydrogeranylgeraniol tail rather than the phytol tail that is present in BChl a. The carotenoids and major BChl c homologs in "Ca. Chlorothrix halophila" were also identified. BChls c were found to be farnesol esterified and geranylgeraniol esterified.
Collapse
Affiliation(s)
- Tien Le Olson
- Department of Biology and Chemistry, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | |
Collapse
|
22
|
Arellano JB, Psencik J, Borrego CM, Ma YZ, Guyoneaud R, Garcia-Gil J, Gillbro T. Effect of Carotenoid Biosynthesis Inhibition on the Chlorosome Organization in Chlorobium phaeobacteroides Strain CL1401. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0710715eocbio2.0.co2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Arellano JB, Bernt Melø T, Borrego CM, Garcia-Gil J, Naqvi KR. Nanosecond Laser Photolysis Studies of Chlorosomes and Artificial Aggregates Containing Bacteriochlorophyll e: Evidence for the Proximity of Carotenoids and Bacteriochlorophyll a in Chlorosomes from Chlorobium phaeobacteroides strain CL1401¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0720669nlpsoc2.0.co2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Ranchou-Peyruse A, Herbert R, Caumette P, Guyoneaud R. Comparison of cultivation-dependent and molecular methods for studying the diversity of anoxygenic purple phototrophs in sediments of an eutrophic brackish lagoon. Environ Microbiol 2006; 8:1590-9. [PMID: 16913919 DOI: 10.1111/j.1462-2920.2006.01050.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phototrophic anoxygenic purple bacteria play a key role in many aquatic ecosystems by oxidizing sulfur compounds and low-molecular-weight organic compounds using light as energy source. In this study, molecular methods based upon pufM gene (photosynthetic unit forming gene) were compared with culture-dependent methods to investigate anoxygenic purple phototrophic communities in sediments of an eutrophic brackish lagoon. Thirteen strains, belonging to eight different genera of purple phototrophic bacteria were isolated with a large dominance of the metabolically versatile purple non-sulfur bacteria (eight strains), some purple sulfur bacteria (three strains) and two strains belonging to the Roseobacter clade (aerobic phototrophs). The pufM genes amplified from the isolated strains were not detected by the molecular methods [terminal-restriction fragment length polymorphism (T-RFLP)] applied on in situ communities. An environmental clone library of the pufM gene was thus constructed from sediment samples. The results showed that most of the clones probably corresponded to aerobic phototrophic bacteria. Our results demonstrate that the culture-dependent techniques remain the best experimental approach for determining the diversity of phototrophic purple non-sulfur bacteria whereas the molecular approach clearly illustrated the abundance of organisms related to the Roseobacter clade in these eutrophic sediments.
Collapse
Affiliation(s)
- Anthony Ranchou-Peyruse
- Laboratoire d'Ecologie Moléculaire-Microbiologie, EA3525, Université de Pau et des Pays de l'Adour, 64013 Pau Cedex, France
| | | | | | | |
Collapse
|
25
|
Psencík J, Arellano JB, Ikonen TP, Borrego CM, Laurinmäki PA, Butcher SJ, Serimaa RE, Tuma R. Internal structure of chlorosomes from brown-colored chlorobium species and the role of carotenoids in their assembly. Biophys J 2006; 91:1433-40. [PMID: 16731553 PMCID: PMC1518626 DOI: 10.1529/biophysj.106.084228] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chlorosomes are the main light harvesting complexes of green photosynthetic bacteria. Recently, a lamellar model was proposed for the arrangement of pigment aggregates in Chlorobium tepidum chlorosomes, which contain bacteriochlorophyll (BChl) c as the main pigment. Here we demonstrate that the lamellar organization is also found in chlorosomes from two brown-colored species (Chl. phaeovibrioides and Chl. phaeobacteroides) containing BChl e as the main pigment. This suggests that the lamellar model is universal among green sulfur bacteria. In contrast to green-colored Chl. tepidum, chlorosomes from the brown-colored species often contain domains of lamellar aggregates that may help them to survive in extremely low light conditions. We suggest that carotenoids are localized between the lamellar planes and drive lamellar assembly by augmenting hydrophobic interactions. A model for chlorosome assembly, which accounts for the role of carotenoids and secondary BChl homologs, is presented.
Collapse
Affiliation(s)
- Jakub Psencík
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Borrego C, Garcia-Gil L, Vila X, Cristina X, Figueras J, Abella C. Distribution of bacteriochlorophyll homologs in natural populations of brown-colored phototrophic sulfur bacteria. FEMS Microbiol Ecol 2006. [DOI: 10.1111/j.1574-6941.1997.tb00447.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
27
|
Frigaard NU, Bryant DA. Chlorosomes: Antenna Organelles in Photosynthetic Green Bacteria. MICROBIOLOGY MONOGRAPHS 2006. [DOI: 10.1007/7171_021] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Self-aggregates of bacteriochlorophylls-c, d and e in a light-harvesting antenna system of green photosynthetic bacteria: Effect of stereochemistry at the chiral 3-(1-hydroxyethyl) group on the supramolecular arrangement of chlorophyllous pigments. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2005. [DOI: 10.1016/j.jphotochemrev.2005.06.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Wilson MA, Hodgson DA, Keely BJ. Atmospheric pressure chemical ionisation liquid chromatography/multistage mass spectrometry for assignment of sedimentary bacteriochlorophyll derivatives. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:38-46. [PMID: 15570571 DOI: 10.1002/rcm.1749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Atmospheric pressure chemical ionisation liquid chromatography/multistage mass spectrometry (APCI-LC/MSn) provides a rapid, on-line method for the assignment of individual bacteriophaeophorbide c and d methyl esters (BPMEs) in complex mixtures. The MS2 spectrum for each component is diagnostic of the type of BPME (c or d), and characteristic losses in MS5 and MS6 permit assignment of the alkyl substituents at positions C-8 and C-12 of the macrocycle. MS5 mass chromatograms permit the deconvolution of coeluting isobaric BPMEs, revealing the true profiles of the individual components. The distributions are different in lake sediments from la Salada de Chiprana (Spain) and Kirisjes Pond (Antarctica), and a novel BPME c with a neo-pentyl substituent has been observed in the Kirisjes Pond sediment.
Collapse
Affiliation(s)
- Michael A Wilson
- Chemistry Department, University of York, Heslington, York YO10 5DD, UK
| | | | | |
Collapse
|
30
|
Massé A, Airs RL, Keely BJ, de Wit R. The impact of different intensities of green light on the bacteriochlorophyll homologue composition of the chlorobiaceae Prosthecochloris aestuarii and Chlorobium phaeobacteroides. Microbiology (Reading) 2004; 150:2555-2564. [PMID: 15289552 DOI: 10.1099/mic.0.27048-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of theChlorobiaceaeandChloroflexaceaeare unique among the phototrophic micro-organisms in having a remarkably rich chlorophyll pigment diversity. The physiological regulation of this diversity and its ecological implications are still enigmatic. The bacteriochlorophyll composition of the chlorobiaceaeProsthecochloris aestuariistrain CE 2404 andChlorobium phaeobacteroidesstrain UdG 6030 was therefore studied by both HPLC with photodiode array (PDA) detection and liquid chromatography-mass spectrometry (LC-MS). These strains were grown in liquid cultures under green light (480–615 nm) at different light intensities (0·2–55·7 μmol photons m−2 s−1), simulating the irradiance regime at different depths of the water column of deep lakes. The specific growth rates ofPtc. aestuariiunder green light achieved a maximum of 0·06 h−1at light intensities exceeding 6 μmol photons m−2 s−1, lower than the maximum observed under white light (approx. 0·1 h−1). The maximal growth rates ofChl. phaeobacteroidesunder green light were slightly higher (0·07 h−1) than observed forPtc. aestuariiand were achieved at 3·5 and 4·3 μmol photons m−2 s−1. LC-MS/MS analysis of pigment extracts revealed most (>90 %) BChlchomologues ofPtc. aestuariito be esterified with farnesol. The homologues differed in mass by multiples of 14 Da, reflecting different alkyl subsituents at positions C-8 and C-12 on the tetrapyrrole macrocycle. The relative proportions of the individual homologues varied only slightly among different light intensities. The specific content of BChlcwas maximal at 3–5 μmol photons m−2 s−1[400±150 nmol BChlc(mg protein)−1]. In the case ofChl. phaeobacteroides, the specific content of BChlewas maximal at 4·3 μmol photons m−2 s−1[115 nmol BChle(mg protein)−1], and this species was characterized by high carotenoid (isorenieratene) contents. The major BChleforms were esterified with a range of isoprenoid and straight-chain alcohols. The major isoprenoid alcohols comprised mainly farnesol and to a lesser extent geranylgeraniol. The straight-chain alcohols included C15, C15 : 1, C16, C16 : 1and C17. Interestingly, the proportion of straight alkyl chains over isoprenoid esterified side chains shifted markedly with increasing light intensity: the isoprenoid side chains dominated at low light intensities, while the straight-chain alkyl substituents dominated at higher light intensities. The authors propose that this phenomenon may be explained as a result of changing availability of reducing power, i.e. the highly reduced straight-chain alcohols have a higher biosynthetic demand for NADPH2than the polyunsaturated isoprenoid with the same number of carbon atoms.
Collapse
Affiliation(s)
- Astrid Massé
- Laboratoire d'Océanographie Biologique, CNRS-UMR 5805 Université Bordeaux 1, 2 rue du Professeur Jolyet, F-33120 Arcachon, France
| | - Ruth L Airs
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Brendan J Keely
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Rutger de Wit
- Laboratoire d'Océanographie Biologique, CNRS-UMR 5805 Université Bordeaux 1, 2 rue du Professeur Jolyet, F-33120 Arcachon, France
| |
Collapse
|
31
|
Glaeser J, Overmann J. Characterization and in situ carbon metabolism of phototrophic consortia. Appl Environ Microbiol 2003; 69:3739-50. [PMID: 12839739 PMCID: PMC165192 DOI: 10.1128/aem.69.7.3739-3750.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A dense population of the phototrophic consortium "Pelochromatium roseum" was investigated in the chemocline of a temperate holomictic lake (Lake Dagow, Brandenburg, Germany). Fluorescence in situ hybridization revealed that the brown epibionts of "P. roseum" constituted up to 37% of the total bacterial cell number and up to 88% of all green sulfur bacteria present in the chemocline. Specific amplification of 16S rRNA gene fragments of green sulfur bacteria and denaturing gradient gel electrophoresis fingerprinting yielded a maximum of four different DNA bands depending on the year of study, indicating that the diversity of green sulfur bacteria was low. The 465-bp 16S rRNA gene sequence of the epibiont of "P. roseum" was obtained after sorting of individual consortia by micromanipulation, followed by a highly sensitive PCR. The sequence obtained represents a new phylotype within the radiation of green sulfur bacteria. Maximum light-dependent H(14)CO(3)(-) fixation in the chemocline in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea suggested that there was anaerobic autotrophic growth of the green sulfur bacteria. The metabolism of the epibionts was further studied by determining stable carbon isotope ratios (delta(13)C) of their specific biomarkers. Analysis of photosynthetic pigments by high-performance liquid chromatography revealed the presence of high concentrations of bacteriochlorophyll (BChl) e and smaller amounts of BChl a and d and chlorophyll a in the chemocline. Unexpectedly, isorenieratene and beta-isorenieratene, carotenoids typical of other brown members of the green sulfur bacteria, were absent. Instead, four different esterifying alcohols of BChl e were isolated as biomarkers of green sulfur bacterial epibionts, and their delta(13)C values were determined. Farnesol, tetradecanol, hexadecanol, and hexadecenol all were significantly enriched in (13)C compared to bulk dissolved and particulate organic carbon and compared to the biomarkers of purple sulfur bacteria. The difference between the delta(13)C values of farnesol, the major esterifying alcohol of BChl e, and CO(2) was -7.1%, which provides clear evidence that the mode of growth of the green sulfur bacterial epibionts of "P. roseum" in situ is photoautotrophic.
Collapse
Affiliation(s)
- Jens Glaeser
- Bereich Mikrobiologie, Department I, Ludwig-Maximilians-Universität München, Maria-Ward-Strasse 1a, D-80638 Munich, Germany
| | | |
Collapse
|
32
|
Jonkers HM, Ludwig R, Wit R, Pringault O, Muyzer G, Niemann H, Finke N, Beer D. Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: âLa Salada de Chipranaâ (NE Spain). FEMS Microbiol Ecol 2003; 44:175-89. [DOI: 10.1016/s0168-6496(02)00464-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
33
|
Wilson MA, Md Saleh SR, Hodgson DA, Keely BJ. Atmospheric pressure chemical ionisation liquid chromatography/multi-stage mass spectrometry of isobaric bacteriophaeophorbide d methyl esters. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2003; 17:2455-2458. [PMID: 14587093 DOI: 10.1002/rcm.1205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
34
|
Airs RL, Keely BJ. Atmospheric pressure chemical ionisation liquid chromatography/mass spectrometry of bacteriochlorophylls from Chlorobiaceae: characteristic fragmentations. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2002; 16:453-461. [PMID: 11857731 DOI: 10.1002/rcm.598] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Atmospheric pressure chemical ionisation liquid chromatography/mass spectrometry/mass spectrometry (APCI-LC/MS/MS) has been applied to the study of bacteriochlorophylls c, d, and e of phototrophic prokaryotes. Cultures of Chlorobiaceae containing bacteriochlorophyll c, d or e were examined using a high-resolution high-performance liquid chromatography (HPLC) method and APCI-LC/MS/MS employing post-column addition of formic acid. The results reveal complex distributions of bacteriochlorophyll homologues, with some closely eluting species giving isobaric protonated molecules. On-line LC/MS/MS studies reveal characteristic fragment ions for bacteriochlorophylls c, d, and e. Fragmentations involving loss of the extended alkyl substituents that are unique to bacteriochlorophylls c, d and e and their derivatives have been rationalised by studying the phaeophorbides and the results applied to the direct study of the bacteriochlorophylls.
Collapse
Affiliation(s)
- Ruth L Airs
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | | |
Collapse
|
35
|
Gich FB, Borrego CM, MartıÌnez-Planells A, Steensgaard DB, Garcia-Gil J, Holzwarth AR. Variability of the photosynthetic antenna of a Pelodictyon clathratiforme population from a freshwater holomictic pond. FEMS Microbiol Ecol 2001. [DOI: 10.1111/j.1574-6941.2001.tb00848.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
36
|
Airs RL, Atkinson JE, Keely BJ. Development and application of a high resolution liquid chromatographic method for the analysis of complex pigment distributions. J Chromatogr A 2001; 917:167-77. [PMID: 11403468 DOI: 10.1016/s0021-9673(01)00663-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ternary and binary gradient systems have been developed for the high-performance liquid chromatographic analysis of complex pigment distributions typical of natural samples. Improved chromatographic resolution reveals significantly more pigment components in extracts from a sediment (Priest Pot, Cumbria, UK), a microbial mat (les Salines de la Trinital, South Catalonia, Spain) and a culture (C. phaeobacteroides) including novel bacteriochlorophyll derivatives. The methods developed are directly suited to LC-MS analysis and the automated acquisition of MS/MS data for pigments.
Collapse
Affiliation(s)
- R L Airs
- Department of Chemistry, University of York, Heslington, UK
| | | | | |
Collapse
|
37
|
Arellano JB, Melø TB, Borrego CM, Garcia-Gil J, Naqvi KR. Nanosecond laser photolysis studies of chlorosomes and artificial aggregates containing bacteriochlorophyll e: evidence for the proximity of carotenoids and bacteriochlorophyll a in chlorosomes from Chlorobium phaeobacteroides strain CL1401. Photochem Photobiol 2000; 72:669-75. [PMID: 11107853 DOI: 10.1562/0031-8655(2000)072<0669:nlpsoc>2.0.co;2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Time-resolved, laser-induced changes in absorbance, delta A(lambda; t), have been recorded with a view to probing pigment-pigment interactions in chlorosomes (control as well as carotenoid-depleted) and artificial aggregates of bacteriochlorophyll e (BChle). Control chlorosomes were isolated from Chlorobium phaeobacteroides strain CL1401, whose chromophores comprise BChle, bacteriochlorophyll a (BChla) and several carotenoid (Car) pigments; Car-depleted chlorosomes, from cells grown in cultures containing 2-hydroxybiphenyl. Artificial aggregates were prepared by dispersing BChle in aqueous phase in the presence of monogalactosyl diglyceride. In chlorosomes delta A(lambda; t) shows, besides a signal attributable to triplet Car (with a half-life of about 4 microseconds), signals in the Qy regions of both BChl. The BChla signal decays at the same rate as the Car signal, which is explained by postulating that some Car are in intimate contact with some baseplate BChla pigments, and that when a ground-state Car changes into a triplet Car, the absorption spectrum of its BChla neighbors undergoes a concomitant change (termed transient environment-induced perturbation). The signal in the Qy-region of BChle behaves differently: its amplitude falls, under reducing conditions, by more than a factor of two during the first 0.5 microsecond (a period during which the Car signal suffers negligible diminution), and is much smaller under nonreducing conditions. The BChle signal is also attributed to transient environment-induced perturbation, but in this case the perturber is a BChle photoproduct (probably a triplet or a radical ion). The absence of long-lived BChle triplets in all three systems, and of long-lived BChla triplets in chlorosomes, indicates that BChle in densely packed assemblies is less vulnerable to photodamage than monomeric BChle and that, in chlorosome, BChla rather than BChle needs, and receives, photoprotection from an adjacent Car.
Collapse
Affiliation(s)
- J B Arellano
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | | | | | | | | |
Collapse
|
38
|
Bustillos-Guzmán J, López-Cortés D, Hernandez F, Murillo I. Pigment signatures associated with an anoxic coastal zone: Bahia Concepcion, Gulf of California. JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY 2000; 249:77-88. [PMID: 10817829 DOI: 10.1016/s0022-0981(00)00188-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Bahia Concepcion is a coastal lagoon that has bottom anoxic conditions and high pigment concentrations during the summer. The phytoplankton responsible for this pigment increase is enigmatic, therefore we sampled the lagoon to analyze the pigment with a C8-HPLC system to look for signatures of phytoplankton groups. Analysis reveals a low pigment concentration in the mixed layer with a higher concentration of zeaxanthin and increasing values of chlorophyll a, peridinin, and fucoxanthin below, which peaked at the depth where oxygen dramatically decreases and H(2)S increases. Below this depth, a high pigmentation was recorded and the most important signatures were six chlorophyll-like pigments that eluted between the fucoxanthin and the chlorophyll a, and one carotenoid that eluted just after the chlorophyll a. Spectral characteristics of these last pigments are very similar to pigments present in the Chlorobiales group. These results suggest that cyanobacteria, diatoms, and dinoflagellates are responsible for the chlorophyll a increases, though in highly pigmented samples, anoxygenic phototrophic bacteria are probably the main contributors to the increase in pigments.
Collapse
|
39
|
Airs RL, Keely BJ. A novel approach for sensitivity enhancement in atmospheric pressure chemical ionisation liquid chromatography/mass spectrometry of chlorophylls. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2000; 14:125-128. [PMID: 10637416 DOI: 10.1002/(sici)1097-0231(20000215)14:3<125::aid-rcm847>3.0.co;2-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Differences in the ionisation efficiency of chlorophylls and their phaeophytin counterparts result in lower sensitivity for atmospheric pressure chemical ionisation mass spectrometric detection of the former. Improvement in the sensitivity of detection of chlorophyll of around an order of magnitude at a concentration of 1 x 10(-6)mol L(-1) has been achieved using post-column addition of methanoic acid during analysis by liquid chromatography/mass spectrometry (LC/MS). The method gives linear response and is a simple strategy to improve sensitivity both for LC/MS and LC/MS/MS without loss of information relating to the precise nature of the tetrapyrrole distributions. Detection levels achieved exceed those obtained by absorbance detection.
Collapse
Affiliation(s)
- R L Airs
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | | |
Collapse
|
40
|
Borrego CM, Garcia-Gil J, Cristina XP, Vila X, Abella CA. Occurrence of new bacteriochlorophyll d forms in natural populations of green photosynthetic sulfur bacteria. FEMS Microbiol Ecol 1998. [DOI: 10.1111/j.1574-6941.1998.tb00510.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
41
|
Vila X, Abella C, Figueras J, Hurley J. Vertical models of phototrophic bacterial distribution in the metalimnetic microbial communities of several freshwater North-American kettle lakes. FEMS Microbiol Ecol 1998. [DOI: 10.1111/j.1574-6941.1998.tb00481.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
42
|
Steensgaard DB, Cox RP, Miller M. Manipulation of the bacteriochlorophyll c homolog distribution in the green sulfur bacterium Chlorobium tepidum. PHOTOSYNTHESIS RESEARCH 1996; 48:385-393. [PMID: 24271479 DOI: 10.1007/bf00029471] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/1996] [Accepted: 03/22/1996] [Indexed: 06/02/2023]
Abstract
We have shown that the green sulfur bacterium Chlorobium tepidum can be grown in batch culture supplemented with potentially toxic fatty alcohols without a major effect on the growth rate if the concentration of the alcohols is kept low either by programmed addition or by adding the alcohol as an inclusion complex with β-cyclodextrin. HPLC and GC analysis of pigment extracts from the supplemented cells showed that the fatty alcohols were incorporated into bacteriochlorophyll c as the esterifying alcohol. It was possible to change up to 43% of the naturally occurring farnesyl ester of bacteriochlorophyll c with the added alcohol. This change in the homolog composition had no effect on the spectral properties of the cells when farnesol was partially replaced by stearol, phytol or geranylgeraniol. However, with dodecanol we obtained a blue-shift of 6 nm of the Qy band of the bacteriochlorophyll c and a concomitant change in the fluorescence emission was observed. The possible significance of these findings is discussed in the light of current ideas about bacteriochlorophyll organization in the chlorosomes.
Collapse
Affiliation(s)
- D B Steensgaard
- Institute of Biochemistry, Odense University, Campusvej 55, DK-5230, Odense M, Denmark
| | | | | |
Collapse
|
43
|
Frigaard NU, Larsen KL, Cox RP. Spectrochromatography of photosynthetic pigments as a fingerprinting technique for microbial phototrophs. FEMS Microbiol Ecol 1996. [DOI: 10.1111/j.1574-6941.1996.tb00306.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
44
|
Borrego CM, Garcia-Gil LJ. Rearrangement of light harvesting bacteriochlorophyll homologues as a response of green sulfur bacteria to low light intensities. PHOTOSYNTHESIS RESEARCH 1995; 45:21-30. [PMID: 24301376 DOI: 10.1007/bf00032232] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/1995] [Accepted: 05/31/1995] [Indexed: 06/02/2023]
Abstract
The pigment composition of two species of green-colored BChl c-containing green sulfur bacteria (Chlorobium limicola and C. chlorovibrioides) and two species of brown-colored BChl e-containing ones (C. phaeobacteroides and C. phaeovibrioides) incubated at different light intensities have been studied. All species responded to the reduction of light intensity from 50 to 1 μEinstein(E) m(-2) s(-1) by an increase in the specific content of light harvesting pigments, bacteriochlorophylls and carotenoids. At critical light intensities (0.5 to 0.1 μE m(-2) s(-1)) only brown-colored chlorobia were able to grow, though at low specific rates (0.002 days(-1) mg prot(-1)). High variations in the relative content of farnesyl-bacteriochlorophyll homologues were found, in particular BChl e 1 and BChl e 4, which were tentatively identified as [M, E] and [I, E] BChlF e, respectively. The former was almost completely lost upon reduction of light intensity from 50 to 0.1 μE m(-2) s(-1), whereas the latter increased from 7.2 to 38.4% and from 13.6 to 42.0% in C. phaeobacteroides and C. phaeovibrioides, respectively. This increase in the content of highly alkylated pigment molecules inside the chlorosomes of brown species is interpreted as a physiological mechanism to improve the efficiency of energy transfer towards the reaction center. This study provides some clues for understanding the physiological basis of the adaptation of brown species to extremely low light intensities.
Collapse
Affiliation(s)
- C M Borrego
- Laboratory of Microbiology, Department of Biology, University of Girona, Hospital 6, E-17071, Girona, Spain
| | | |
Collapse
|
45
|
Incorporation of exogenous long-chain alcohols into bacteriochlorophyll c homologs by Chloroflexus aurantiacus. Arch Microbiol 1995. [DOI: 10.1007/bf00381785] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Dudkowiak A, Francke C, Amesz J. Aggregation of 8,12-diethyl farnesyl bacteriochlorophyll c at low temperature. PHOTOSYNTHESIS RESEARCH 1995; 46:427-433. [PMID: 24301637 DOI: 10.1007/bf00032297] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/1995] [Accepted: 09/26/1995] [Indexed: 06/02/2023]
Abstract
The effect of temperature on the aggregation of 3(l)R-8,12-diethyl farnesyl bacteriochlorophyll c in a mixture of n-pentane and methylcyclohexane (1/1, v/v) was studied by means of absorption, circular dichroism and fluorescence spectroscopy. At room temperature essentially only two aggregate species, absorbing at 702 nm (A-702) and 719 nm (A-719), were present. Upon cooling to 219 K, A-702 was quantitatively converted to A-719. Further lowering of the temperature led to the stepwise formation of larger aggregates by the conversion of A-719 to aggregate species absorbing at 743 nm (A-743) and 755 nm (A-755). All absorption changes were reversible. A-719 was highly fluorescent (maximum at 192 K: 744 nm), while A-743 and especially A-755 were weakly fluorescent. Below 130 K the mixture solidified, and no major changes in the absorption spectrum were observed upon further cooling. At 45 K, however, a relatively strong emission at 775 nm was observed. Below 200 K, the absorption, fluorescence and circular dichroism spectra resembled that of the chlorosome. These results open up the possibility to study higher aggregates of BChl c as models for the chlorosome by various methods at low temperature, thus avoiding interference by thermal processes.
Collapse
Affiliation(s)
- A Dudkowiak
- Department of Biophysics, Huygens Laboratory, University of Leiden, P.O. Box 9504, 2300 RA, Leiden, The Netherlands
| | | | | |
Collapse
|