1
|
Nishihara A, Tsukatani Y, Azai C, Nobu MK. Illuminating the coevolution of photosynthesis and Bacteria. Proc Natl Acad Sci U S A 2024; 121:e2322120121. [PMID: 38875151 PMCID: PMC11194577 DOI: 10.1073/pnas.2322120121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/06/2024] [Indexed: 06/16/2024] Open
Abstract
Life harnessing light energy transformed the relationship between biology and Earth-bringing a massive flux of organic carbon and oxidants to Earth's surface that gave way to today's organotrophy- and respiration-dominated biosphere. However, our understanding of how life drove this transition has largely relied on the geological record; much remains unresolved due to the complexity and paucity of the genetic record tied to photosynthesis. Here, through holistic phylogenetic comparison of the bacterial domain and all photosynthetic machinery (totally spanning >10,000 genomes), we identify evolutionary congruence between three independent biological systems-bacteria, (bacterio)chlorophyll-mediated light metabolism (chlorophototrophy), and carbon fixation-and uncover their intertwined history. Our analyses uniformly mapped progenitors of extant light-metabolizing machinery (reaction centers, [bacterio]chlorophyll synthases, and magnesium-chelatases) and enzymes facilitating the Calvin-Benson-Bassham cycle (form I RuBisCO and phosphoribulokinase) to the same ancient Terrabacteria organism near the base of the bacterial domain. These phylogenies consistently showed that extant phototrophs ultimately derived light metabolism from this bacterium, the last phototroph common ancestor (LPCA). LPCA was a non-oxygen-generating (anoxygenic) phototroph that already possessed carbon fixation and two reaction centers, a type I analogous to extant forms and a primitive type II. Analyses also indicate chlorophototrophy originated before LPCA. We further reconstructed evolution of chlorophototrophs/chlorophototrophy post-LPCA, including vertical inheritance in Terrabacteria, the rise of oxygen-generating chlorophototrophy in one descendant branch near the Great Oxidation Event, and subsequent emergence of Cyanobacteria. These collectively unveil a detailed view of the coevolution of light metabolism and Bacteria having clear congruence with the geological record.
Collapse
Affiliation(s)
- Arisa Nishihara
- Department of Life Science and Biotechnology, The National Institute of Advanced Industrial Science and Technology, Ibaraki305-0817, Japan
| | - Yusuke Tsukatani
- Biogeochemistry Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa237-0061, Japan
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa237-0061, Japan
| | - Chihiro Azai
- College of Life Sciences, Ritsumeikan University, Shiga525-8577, Japan
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo112-8551, Japan
| | - Masaru K. Nobu
- Department of Life Science and Biotechnology, The National Institute of Advanced Industrial Science and Technology, Ibaraki305-0817, Japan
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa237-0061, Japan
| |
Collapse
|
2
|
Yao C, Qingyu W, Zhen L, Renyu C, Qihong C, Shaochun Y, Qiong W, Yinghui T. Nitrogen process in stormwater bioretention: effect of the antecedent dry days on the relative abundance of nitrogen functional genes. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1269-1283. [PMID: 36358060 DOI: 10.2166/wst.2022.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, we evaluated the relative abundance of nitrogen functional genes (amoA, nirK and nirS) involved in ammonia oxidation and denitrification bacteria in laboratory-scale bioretention columns in response to environmental factors (e.g., moisture content, pH, soil organic matter, soil nitrogen) under different antecedent dry days (ADDs). We observed a decrease tendency of the relative abundance of ammonia-oxidizing bacteria at first and then increased when increasing ADDs from 1 to 22 day, while the relative abundance of denitrifying bacteria showed a downward trend. The abundance of bacteria gene amoA was positively associated with soil ammonia nitrogen concentration (r2 = 0.389, p < 0.05) and soil organic matter concentration (r2 = 0.334, p < 0.05), while the abundance of bacteria gene nirS was positively correlated with soil ammonia nitrogen (r2 = 0.730, p < 0.01), soil organic matter (r2 = 0.901, p < 0.01) and soil total nitrogen (r2 = 0.779, p < 0.01). Furthermore, gene counts for bacteria gene nirS were correlated negatively with plant root length (r2 = 0.364, p < 0.05) and plant biomass (r2 = 0.381, p < 0.05). Taken together, these results suggest that both nitrification and denitrification can occur in bioretention systems, which can be affected by environmental factors.
Collapse
Affiliation(s)
- Chen Yao
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail: ; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing 400074, China
| | - Wu Qingyu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail:
| | - Liu Zhen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail: ; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing 400074, China
| | - Chen Renyu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail:
| | - Cheng Qihong
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail:
| | - Yuan Shaochun
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail: ; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing 400074, China
| | - Wu Qiong
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail:
| | - Tang Yinghui
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail:
| |
Collapse
|
3
|
Orf GS, Gisriel C, Redding KE. Evolution of photosynthetic reaction centers: insights from the structure of the heliobacterial reaction center. PHOTOSYNTHESIS RESEARCH 2018; 138:11-37. [PMID: 29603081 DOI: 10.1007/s11120-018-0503-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/22/2018] [Indexed: 05/24/2023]
Abstract
The proliferation of phototrophy within early-branching prokaryotes represented a significant step forward in metabolic evolution. All available evidence supports the hypothesis that the photosynthetic reaction center (RC)-the pigment-protein complex in which electromagnetic energy (i.e., photons of visible or near-infrared light) is converted to chemical energy usable by an organism-arose once in Earth's history. This event took place over 3 billion years ago and the basic architecture of the RC has diversified into the distinct versions that now exist. Using our recent 2.2-Å X-ray crystal structure of the homodimeric photosynthetic RC from heliobacteria, we have performed a robust comparison of all known RC types with available structural data. These comparisons have allowed us to generate hypotheses about structural and functional aspects of the common ancestors of extant RCs and to expand upon existing evolutionary schemes. Since the heliobacterial RC is homodimeric and loosely binds (and reduces) quinones, we support the view that it retains more ancestral features than its homologs from other groups. In the evolutionary scenario we propose, the ancestral RC predating the division between Type I and Type II RCs was homodimeric, loosely bound two mobile quinones, and performed an inefficient disproportionation reaction to reduce quinone to quinol. The changes leading to the diversification into Type I and Type II RCs were separate responses to the need to optimize this reaction: the Type I lineage added a [4Fe-4S] cluster to facilitate double reduction of a quinone, while the Type II lineage heterodimerized and specialized the two cofactor branches, fixing the quinone in the QA site. After the Type I/II split, an ancestor to photosystem I fixed its quinone sites and then heterodimerized to bind PsaC as a new subunit, as responses to rising O2 after the appearance of the oxygen-evolving complex in an ancestor of photosystem II. These pivotal events thus gave rise to the diversity that we observe today.
Collapse
Affiliation(s)
- Gregory S Orf
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ, 85287, USA
| | - Christopher Gisriel
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ, 85287, USA
- The Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287, USA
| | - Kevin E Redding
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
- Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
4
|
Ortega-Ramos M, Canniffe DP, Radle MI, Neil Hunter C, Bryant DA, Golbeck JH. Engineered biosynthesis of bacteriochlorophyll g F in Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:501-509. [PMID: 29496394 DOI: 10.1016/j.bbabio.2018.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/01/2018] [Accepted: 02/23/2018] [Indexed: 01/29/2023]
Abstract
Engineering photosynthetic bacteria to utilize a heterologous reaction center that contains a different (bacterio) chlorophyll could improve solar energy conversion efficiency by allowing cells to absorb a broader range of the solar spectrum. One promising candidate is the homodimeric type I reaction center from Heliobacterium modesticaldum. It is the simplest known reaction center and uses bacteriochlorophyll (BChl) g, which absorbs in the near-infrared region of the spectrum. Like the more common BChls a and b, BChl g is a true bacteriochlorin. It carries characteristic C3-vinyl and C8-ethylidene groups, the latter shared with BChl b. The purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides was chosen as the platform into which the engineered production of BChl gF, where F is farnesyl, was attempted. Using a strain of Rba. sphaeroides that produces BChl bP, where P is phytyl, rather than the native BChl aP, we deleted bchF, a gene that encodes an enzyme responsible for the hydration of the C3-vinyl group of a precursor of BChls. This led to the production of BChl gP. Next, the crtE gene was deleted, thereby producing BChl g carrying a THF (tetrahydrofarnesol) moiety. Additionally, the bchGRs gene from Rba. sphaeroides was replaced with bchGHm from Hba. modesticaldum. To prevent reduction of the tail, bchP was deleted, which yielded BChl gF. The construction of a strain producing BChl gF validates the biosynthetic pathway established for its synthesis and satisfies a precondition for assembling the simplest reaction center in a heterologous organism, namely the biosynthesis of its native pigment, BChl gF.
Collapse
Affiliation(s)
- Marcia Ortega-Ramos
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Daniel P Canniffe
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Matthew I Radle
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA; Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA; Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
5
|
Kondo T, Matsuoka M, Azai C, Kobayashi M, Itoh S, Oh-oka H. Light-Induced Electron Spin-Polarized (ESP) EPR Signal of the P800+ Menaquinone– Radical Pair State in Oriented Membranes of Heliobacterium modesticaldum: Role/Location of Menaquinone in the Homodimeric Type I Reaction Center. J Phys Chem B 2018; 122:2536-2543. [DOI: 10.1021/acs.jpcb.7b12171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Toru Kondo
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Japan
| | - Masahiro Matsuoka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Chihiro Azai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Masami Kobayashi
- Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Shigeru Itoh
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Japan
| | - Hirozo Oh-oka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| |
Collapse
|
6
|
Khadka B, Adeolu M, Blankenship RE, Gupta RS. Novel insights into the origin and diversification of photosynthesis based on analyses of conserved indels in the core reaction center proteins. PHOTOSYNTHESIS RESEARCH 2017; 131:159-171. [PMID: 27638319 DOI: 10.1007/s11120-016-0307-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
The evolution and diversification of different types of photosynthetic reaction centers (RCs) remains an important unresolved problem. We report here novel sequence features of the core proteins from Type I RCs (RC-I) and Type II RCs (RC-II) whose analyses provide important insights into the evolution of the RCs. The sequence alignments of the RC-I core proteins contain two conserved inserts or deletions (indels), a 3 amino acid (aa) indel that is uniquely found in all RC-I homologs from Cyanobacteria (both PsaA and PsaB) and a 1 aa indel that is specifically shared by the Chlorobi and Acidobacteria homologs. Ancestral sequence reconstruction provides evidence that the RC-I core protein from Heliobacteriaceae (PshA), lacking these indels, is most closely related to the ancestral RC-I protein. Thus, the identified 3 aa and 1 aa indels in the RC-I protein sequences must have been deletions, which occurred, respectively, in an ancestor of the modern Cyanobacteria containing a homodimeric form of RC-I and in a common ancestor of the RC-I core protein from Chlorobi and Acidobacteria. We also report a conserved 1 aa indel in the RC-II protein sequences that is commonly shared by all homologs from Cyanobacteria but not found in the homologs from Chloroflexi, Proteobacteria and Gemmatimonadetes. Ancestral sequence reconstruction provides evidence that the RC-II subunits lacking this indel are more similar to the ancestral RC-II protein. The results of flexible structural alignments of the indel-containing region of the RC-II protein with the homologous region in the RC-I core protein, which shares structural similarity with the RC-II homologs, support the view that the 1 aa indel present in the RC-II homologs from Cyanobacteria is a deletion, which was not present in the ancestral form of the RC-II protein. Our analyses of the conserved indels found in the RC-I and RC-II proteins, thus, support the view that the earliest photosynthetic lineages with living descendants likely contained only a single RC (RC-I or RC-II), and the presence of both RC-I and RC-II in a linked state, as found in the modern Cyanobacteria, is a derivation from these earlier phototrophs.
Collapse
Affiliation(s)
- Bijendra Khadka
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Mobolaji Adeolu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Robert E Blankenship
- Department of Biology and Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
| |
Collapse
|
7
|
Kondo T, Matsuoka M, Azai C, Itoh S, Oh-oka H. Orientations of Iron–Sulfur Clusters FA and FB in the Homodimeric Type-I Photosynthetic Reaction Center of Heliobacterium modesticaldum. J Phys Chem B 2016; 120:4204-12. [DOI: 10.1021/acs.jpcb.6b01112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Toru Kondo
- Division
of Material Science (Physics), Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Japan
| | - Masahiro Matsuoka
- Department
of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Chihiro Azai
- Department
of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Shigeru Itoh
- Center
for Gene Research, Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Japan
| | - Hirozo Oh-oka
- Department
of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| |
Collapse
|
8
|
Gupta RS, Khadka B. Evidence for the presence of key chlorophyll-biosynthesis-related proteins in the genus Rubrobacter (Phylum Actinobacteria) and its implications for the evolution and origin of photosynthesis. PHOTOSYNTHESIS RESEARCH 2016; 127:201-18. [PMID: 26174026 DOI: 10.1007/s11120-015-0177-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/06/2015] [Indexed: 05/18/2023]
Abstract
Homologs showing high degree of sequence similarity to the three subunits of the protochlorophyllide oxidoreductase enzyme complex (viz. BchL, BchN, and BchB), which carries out a central role in chlorophyll-bacteriochlorophyll (Bchl) biosynthesis, are uniquely found in photosynthetic organisms. The results of BLAST searches and homology modeling presented here show that proteins exhibiting a high degree of sequence and structural similarity to the BchB and BchN proteins are also present in organisms from the high G+C Gram-positive phylum of Actinobacteria, specifically in members of the genus Rubrobacter (R. x ylanophilus and R. r adiotolerans). The results presented exclude the possibility that the observed BLAST hits are for subunits of the nitrogenase complex or the chlorin reductase complex. The branching in phylogenetic trees and the sequence characteristics of the Rubrobacter BchB/BchN homologs indicate that these homologs are distinct from those found in other photosynthetic bacteria and that they may represent ancestral forms of the BchB/BchN proteins. Although a homolog showing high degree of sequence similarity to the BchL protein was not detected in Rubrobacter, another protein, belonging to the ParA/Soj/MinD family, present in these bacteria, exhibits high degree of structural similarity to the BchL. In addition to the BchB/BchN homologs, Rubrobacter species also contain homologs showing high degree of sequence similarity to different subunits of magnesium chelatase (BchD, BchH, and BchI) as well as proteins showing significant similarity to the BchP and BchG proteins. Interestingly, no homologs corresponding to the BchX, BchY, and BchZ proteins were detected in the Rubrobacter species. These results provide the first suggestive evidence that some form of photosynthesis either exists or was anciently present within the phylum Actinobacteria (high G+C Gram-positive) in members of the genus Rubrobacter. The significance of these results concerning the origin of the Bchl-based photosynthesis is also discussed.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
| | - Bijendra Khadka
- Department of Biochemistry, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| |
Collapse
|
9
|
Cardona T. A fresh look at the evolution and diversification of photochemical reaction centers. PHOTOSYNTHESIS RESEARCH 2015; 126:111-34. [PMID: 25512103 PMCID: PMC4582080 DOI: 10.1007/s11120-014-0065-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 12/05/2014] [Indexed: 05/18/2023]
Abstract
In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers.
Collapse
Affiliation(s)
- Tanai Cardona
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| |
Collapse
|
10
|
Abstract
Oxygenic photosynthesis is the principal converter of sunlight into chemical energy on Earth. Cyanobacteria and plants provide the oxygen, food, fuel, fibers, and platform chemicals for life on Earth. The conversion of solar energy into chemical energy is catalyzed by two multisubunit membrane protein complexes, photosystem I (PSI) and photosystem II (PSII). Light is absorbed by the pigment cofactors, and excitation energy is transferred among the antennae pigments and converted into chemical energy at very high efficiency. Oxygenic photosynthesis has existed for more than three billion years, during which its molecular machinery was perfected to minimize wasteful reactions. Light excitation transfer and singlet trapping won over fluorescence, radiation-less decay, and triplet formation. Photosynthetic reaction centers operate in organisms ranging from bacteria to higher plants. They are all evolutionarily linked. The crystal structure determination of photosynthetic protein complexes sheds light on the various partial reactions and explains how they are protected against wasteful pathways and why their function is robust. This review discusses the efficiency of photosynthetic solar energy conversion.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
| | | |
Collapse
|
11
|
Stadnichuk IN, Tropin IV. Antenna replacement in the evolutionary origin of chloroplasts. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714030163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Nelson N. Evolution of photosystem I and the control of global enthalpy in an oxidizing world. PHOTOSYNTHESIS RESEARCH 2013; 116:145-151. [PMID: 23954951 DOI: 10.1007/s11120-013-9902-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 07/26/2013] [Indexed: 05/28/2023]
Abstract
Life on earth is governed by light, chemical reactions, and the second law of thermodynamics, which defines the tendency for increasing entropy as an expression of disorder or randomness. Life is an expression of increasing order, and a constant influx of energy and loss of entropic wastes are required to maintain or increase order in living organisms. Most of the energy for life comes from sunlight and, thus, photosynthesis underlies the survival of all life forms. Oxygenic photosynthesis determines not only the global amount of enthalpy in living systems, but also the composition of the Earth's atmosphere and surface. Photosynthesis was established on the Earth more than 3.5 billion years ago. The primordial reaction center has been suggested to comprise a homodimeric unit resembling the core complex of the current reaction centers in Chlorobi, Heliobacteria, and Acidobacteria. Here, an evolutionary scenario based on the known structures of the current reaction centers is proposed.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel,
| |
Collapse
|
13
|
Sousa FL, Shavit-Grievink L, Allen JF, Martin WF. Chlorophyll biosynthesis gene evolution indicates photosystem gene duplication, not photosystem merger, at the origin of oxygenic photosynthesis. Genome Biol Evol 2013; 5:200-16. [PMID: 23258841 PMCID: PMC3595025 DOI: 10.1093/gbe/evs127] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
An open question regarding the evolution of photosynthesis is how cyanobacteria came to possess the two reaction center (RC) types, Type I reaction center (RCI) and Type II reaction center (RCII). The two main competing theories in the foreground of current thinking on this issue are that either 1) RCI and RCII are related via lineage divergence among anoxygenic photosynthetic bacteria and became merged in cyanobacteria via an event of large-scale lateral gene transfer (also called "fusion" theories) or 2) the two RC types are related via gene duplication in an ancestral, anoxygenic but protocyanobacterial phototroph that possessed both RC types before making the transition to using water as an electron donor. To distinguish between these possibilities, we studied the evolution of the core (bacterio)chlorophyll biosynthetic pathway from protoporphyrin IX (Proto IX) up to (bacterio)chlorophyllide a. The results show no dichotomy of chlorophyll biosynthesis genes into RCI- and RCII-specific chlorophyll biosynthetic clades, thereby excluding models of fusion at the origin of cyanobacteria and supporting the selective-loss hypothesis. By considering the cofactor demands of the pathway and the source genes from which several steps in chlorophyll biosynthesis are derived, we infer that the cell that first synthesized chlorophyll was a cobalamin-dependent, heme-synthesizing, diazotrophic anaerobe.
Collapse
Affiliation(s)
- Filipa L Sousa
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany.
| | | | | | | |
Collapse
|
14
|
Gupta RS. Origin and Spread of Photosynthesis Based upon Conserved Sequence Features in Key Bacteriochlorophyll Biosynthesis Proteins. Mol Biol Evol 2012; 29:3397-412. [DOI: 10.1093/molbev/mss145] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Romberger SP, Golbeck JH. The FX iron-sulfur cluster serves as the terminal bound electron acceptor in heliobacterial reaction centers. PHOTOSYNTHESIS RESEARCH 2012; 111:285-290. [PMID: 22297911 DOI: 10.1007/s11120-012-9723-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 01/13/2012] [Indexed: 05/31/2023]
Abstract
Phototrophs of the family Heliobacteriaceae contain the simplest known Type I reaction center (RC), consisting of a homodimeric (PshA)(2) core devoid of bound cytochromes and antenna proteins. Unlike plant and cyanobacterial Photosystem I in which the F(A)/F(B) protein, PsaC, is tightly bound to P(700)-F(X) cores, the RCs of Heliobacterium modesticaldum contain two F(A)/F(B) proteins, PshBI and PshBII, which are loosely bound to P(800)-F(X) cores. These two 2[4Fe-4S] ferredoxins have been proposed to function as mobile redox proteins, reducing downstream metabolic partners much in the same manner as does [2Fe-2S] ferredoxin or flavodoxin (Fld) in PS I. Using P(800)-F(X) cores devoid of PshBI and PshBII, we show that iron-sulfur cluster F(X) directly reduces Fld without the involvement of F(A) or F(B) (Fld is used as a proxy for soluble redox proteins even though a gene encoding Fld is not identified in the H. modesticaldum genome). The reduction of Fld is suppressed by the addition of PshBI or PshBII, an effect explained by competition for the electron on F(X). In contrast, P(700)-F(X) cores require the presence of the PsaC, and hence, the F(A)/F(B) clusters for Fld (or ferredoxin) reduction. Thus, in H. modesticaldum, the interpolypeptide F(X) cluster serves as the terminal bound electron acceptor. This finding implies that the homodimeric (PshA)(2) cores should be capable of donating electrons to a wide variety of yet-to-be characterized soluble redox partners.
Collapse
Affiliation(s)
- Steven P Romberger
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
16
|
Jagannathan B, Shen G, Golbeck JH. The Evolution of Type I Reaction Centers: The Response to Oxygenic Photosynthesis. FUNCTIONAL GENOMICS AND EVOLUTION OF PHOTOSYNTHETIC SYSTEMS 2012. [DOI: 10.1007/978-94-007-1533-2_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Nelson N. Photosystems and global effects of oxygenic photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:856-63. [PMID: 20955682 DOI: 10.1016/j.bbabio.2010.10.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/10/2010] [Accepted: 10/12/2010] [Indexed: 11/19/2022]
Abstract
Because life on earth is governed by the second law of thermodynamics, it is subject to increasing entropy. Oxygenic photosynthesis, the earth's major producer of both oxygen and organic matter, is a principal player in the development and maintenance of life, and thus results in increased order. The primary steps of oxygenic photosynthesis are driven by four multi-subunit membrane protein complexes: photosystem I, photosystem II, cytochrome b(6)f complex, and F-ATPase. Photosystem II generates the most positive redox potential found in nature and thus capable of extracting electrons from water. Photosystem I generates the most negative redox potential found in nature; thus, it largely determines the global amount of enthalpy in living systems. The recent structural determination of PSII and PSI complexes from cyanobacteria and plants sheds light on the evolutionary forces that shaped oxygenic photosynthesis. This newly available structural information complements knowledge gained from genomic and proteomic data, allowing for a more precise description of the scenario in which the evolution of life systems took place. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, The Daniella Rich Institute for Structural Biology, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
18
|
Romberger SP, Castro C, Sun Y, Golbeck JH. Identification and characterization of PshBII, a second FA/FB-containing polypeptide in the photosynthetic reaction center of Heliobacterium modesticaldum. PHOTOSYNTHESIS RESEARCH 2010; 104:293-303. [PMID: 20502966 DOI: 10.1007/s11120-010-9558-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 04/29/2010] [Indexed: 05/29/2023]
Abstract
All known Type I photosynthetic reaction centers harbor three [4Fe-4S] clusters named F(X), F(A) and F(B) that function as terminal electron acceptors. We reported earlier that F(A) and F(B) in the homodimeric Type I reaction center from Heliobacterium modesticaldum reside on a loosely bound 54 amino acid protein named PshB. Time-resolved optical spectroscopy and low temperature EPR spectroscopy showed that on illumination, electrons were transferred from F(X) (-) to F(A) and F(B) at both cryogenic and room temperatures. Interestingly, the gene that codes for PshB, HM1_1462, is part of a predicted dicistronic operon that contains a second gene, named HM1_1461, which codes for a second ferredoxin-like protein with high sequence homology to PshB, including the two traditional [4Fe-4S] cluster binding motifs. RT-PCR results confirm that both genes are transcribed as a single transcript. We have cloned the HM1_1461 gene through PCR amplification of the H. modesticaldum chromosomal DNA and overexpressed the apoprotein in Escherichia coli. Reconstitution studies with inorganic reagents have shown that the holoprotein harbors ~8 iron and ~8 sulfide atoms in the form of two [4Fe-4S] clusters. Incubation of the reconstituted holoprotein with heliobacterial reaction center cores results in a charge-separated state characteristic of electron transfer past the F(X) cluster to the terminal [4Fe-4S] clusters F(A) and F(B). These results suggest that the HM1_1461 product, which we have named PshBII, is capable of functioning in lieu of PshB (renamed PshBI) as an alternative terminal electron transfer protein. Thus, unlike PS I, to which PsaC is tightly bound, two loosely bound ferredoxins, PshBI and PshBII, are capable of interacting with the heliobacterial reaction center. The presence of two, loosely bound F(A)/F(B) proteins represents a significant shift in our understanding of structure-function relationships in Type I reaction centers.
Collapse
Affiliation(s)
- Steven P Romberger
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
19
|
Gupta RS. Molecular signatures for the main phyla of photosynthetic bacteria and their subgroups. PHOTOSYNTHESIS RESEARCH 2010; 104:357-372. [PMID: 20414806 DOI: 10.1007/s11120-010-9553-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 04/08/2010] [Indexed: 05/29/2023]
Abstract
The bacterial groups corresponding to different photosynthetic prokaryotes are presently identified mainly on the basis of their branching in phylogenetic trees. The availability of genome sequences is enabling identification of many molecular signatures that are specific for different groups of photosynthetic bacteria. Our recent work has identified large numbers of signatures consisting of conserved inserts or deletions (indels) in widely distributed proteins, as well as whole proteins that are specific for various sequenced species/strains from Cyanobacteria, Chlorobi, and Proteobacteria phyla. Based upon these signatures, it is now possible to identify/distinguish bacteria from these phyla of photosynthetic bacteria as well as their major subclades in clear molecular terms. The use of these signatures in conjunction with phylogenomic analyses, summarized here, is leading to a holistic picture concerning the branching order and evolutionary relationships among the above groups of photosynthetic bacteria. Although detailed studies in this regard have not yet been carried on Chloroflexi and Heliobacteriaceae, we have identified some conserved indels that are specific for these groups. Some of the conserved indels for the photosynthetic bacteria are present in photosynthesis-related proteins. These include a 4 aa insert in the pyruvate flavodoxin/ferridoxin oxidoreductase that is specific for the genus Chloroflexus, a 2 aa insert in magnesium chelatase that is uniquely shared by all Cyanobacteria except the deepest branching Clade A (Gloebacterales), a 6 aa insert in an A-type flavoprotein that is specific for various marine unicellular Cyanobacteria, a 2 aa insert in heme oxygenase that is specific for various Prochlorococcus strains/isolates, and 1 aa deletion in the protein protochlorophyllide oxidoreductase that is commonly shared by various Prochlorococcus strains except the deepest branching isolates MIT 9303 and MIT 9313. The identified CSIs are located in the structures of these proteins in surface loops indicating that they may be important in mediating protein-protein interactions. The cellular functions of these conserved indels, or most of the signature proteins are presently unknown, but they provide valuable means for discovering novel properties that are unique to different groups of photosynthetic bacteria.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
20
|
Raymond J. The role of horizontal gene transfer in photosynthesis, oxygen production, and oxygen tolerance. Methods Mol Biol 2009; 532:323-38. [PMID: 19271194 DOI: 10.1007/978-1-60327-853-9_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One of the pivotal events during the early evolution of life was the advent of oxygenic photosynthesis, responsible for producing essentially all of the free oxygen in Earth's atmosphere. This molecular innovation required the development of two tandemly linked photosystems that generate a redox potential strong enough to oxidize water and then funnel those electrons ultimately to cellular processes like carbon and nitrogen fixation. The by-product of this reaction, molecular oxygen, spawned an entirely new realm of enzymatic reactions that served to mitigate its potential toxicity, as well as to take advantage of the free energy available from using O(2) as an electron acceptor. These ensuing events ultimately gave rise to aerobic, multicelled eukaryotes and new levels of biological complexity. Remarkably, instances of horizontal gene transfer have been identified at nearly every step in this transformation of the biosphere, from the evolution and radiation of photosynthesis to the development of biological pathways dependent on oxygen. This chapter discusses the evidence and examples of some of these occurrences that have been elucidated in recent years.
Collapse
Affiliation(s)
- Jason Raymond
- School of Natural Sciences, University of California, Merced, CA, USA
| |
Collapse
|
21
|
Genome evolution in cyanobacteria: the stable core and the variable shell. Proc Natl Acad Sci U S A 2008; 105:2510-5. [PMID: 18268351 DOI: 10.1073/pnas.0711165105] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyanobacteria are the only known prokaryotes capable of oxygenic photosynthesis, the evolution of which transformed the biology and geochemistry of Earth. The rapid increase in published genomic sequences of cyanobacteria provides the first opportunity to reconstruct events in the evolution of oxygenic photosynthesis on the scale of entire genomes. Here, we demonstrate the overall phylogenetic incongruence among 682 orthologous protein families from 13 genomes of cyanobacteria. However, using principal coordinates analysis, we discovered a core set of 323 genes with similar evolutionary trajectories. The core set is highly conserved in amino acid sequence and contains genes encoding the major components in the photosynthetic and ribosomal apparatus. Many of the key proteins are encoded by genome-wide conserved small gene clusters, which often are indicative of protein-protein, protein-prosthetic group, and protein-lipid interactions. We propose that the macromolecular interactions in complex protein structures and metabolic pathways retard the tempo of evolution of the core genes and hence exert a selection pressure that restricts piecemeal horizontal gene transfer of components of the core. Identification of the core establishes a foundation for reconstructing robust organismal phylogeny in genome space. Our phylogenetic trees constructed from 16S rRNA gene sequences, concatenated orthologous proteins, and the core gene set all suggest that the ancestral cyanobacterium did not fix nitrogen and probably was a thermophilic organism.
Collapse
|
22
|
Heinnickel M, Golbeck JH. Heliobacterial photosynthesis. PHOTOSYNTHESIS RESEARCH 2007; 92:35-53. [PMID: 17457690 DOI: 10.1007/s11120-007-9162-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 03/23/2007] [Indexed: 05/15/2023]
Abstract
Heliobacteria contain Type I reaction centers (RCs) and a homodimeric core, but unlike green sulfur bacteria, they do not contain an extended antenna system. Given their simplicity, the heliobacterial RC (HbRC) should be ideal for the study of a prototypical homodimeric RC. However, there exist enormous gaps in our knowledge, particularly with regard to the nature of the secondary and tertiary electron acceptors. To paraphrase S. Neerken and J. Amesz (2001 Biochim Biophys Acta 1507:278-290): with the sole exception of primary charge separation, little progress has been made in recent years on the HbRC, either with respect to the polypeptide composition, or the nature of the electron acceptor chain, or the kinetics of forward and backward electron transfer. This situation, however, has changed. First, the low molecular mass polypeptide that contains the terminal FA and FB iron-sulfur clusters has been identified. The change in the lifetime of the flash-induced kinetics from 75 ms to 15 ms on its removal shows that the former arises from the P798+ [FA/FB]- recombination, and the latter from P798+ FX- recombination. Second, FX has been identified in HbRC cores by EPR and Mössbauer spectroscopy, and shown to be a [4Fe-4S]1+,2+ cluster with a ground spin state of S=3/2. Since all of the iron in HbRC cores is in the FX cluster, a ratio of approximately 22 Bchl g/P798 could be calculated from chemical assays of non-heme iron and Bchl g. Third, the N-terminal amino acid sequence of the FA/FB-containing polypeptide led to the identification and cloning of its gene. The expressed protein can be rebound to isolated HbRC cores, thereby regaining both the 75 ms kinetic phase resulting from P798+ [FA/FB]- recombination and the light-induced EPR resonances of FA- and FB-. The gene was named 'pshB' and the protein 'PshB' in keeping with the accepted nomenclature for Type I RCs. This article reviews the current state of knowledge on the structure and function of the HbRC.
Collapse
Affiliation(s)
- Mark Heinnickel
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
23
|
Mulkidjanian AY, Koonin EV, Makarova KS, Mekhedov SL, Sorokin A, Wolf YI, Dufresne A, Partensky F, Burd H, Kaznadzey D, Haselkorn R, Galperin MY. The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci U S A 2006; 103:13126-31. [PMID: 16924101 PMCID: PMC1551899 DOI: 10.1073/pnas.0605709103] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Comparative analysis of 15 complete cyanobacterial genome sequences, including "near minimal" genomes of five strains of Prochlorococcus spp., revealed 1,054 protein families [core cyanobacterial clusters of orthologous groups of proteins (core CyOGs)] encoded in at least 14 of them. The majority of the core CyOGs are involved in central cellular functions that are shared with other bacteria; 50 core CyOGs are specific for cyanobacteria, whereas 84 are exclusively shared by cyanobacteria and plants and/or other plastid-carrying eukaryotes, such as diatoms or apicomplexans. The latter group includes 35 families of uncharacterized proteins, which could also be involved in photosynthesis. Only a few components of cyanobacterial photosynthetic machinery are represented in the genomes of the anoxygenic phototrophic bacteria Chlorobium tepidum, Rhodopseudomonas palustris, Chloroflexus aurantiacus, or Heliobacillus mobilis. These observations, coupled with recent geological data on the properties of the ancient phototrophs, suggest that photosynthesis originated in the cyanobacterial lineage under the selective pressures of UV light and depletion of electron donors. We propose that the first phototrophs were anaerobic ancestors of cyanobacteria ("procyanobacteria") that conducted anoxygenic photosynthesis using a photosystem I-like reaction center, somewhat similar to the heterocysts of modern filamentous cyanobacteria. From procyanobacteria, photosynthesis spread to other phyla by way of lateral gene transfer.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- *School of Physics, University of Osnabrück, D-49069 Osnabrück, Germany
- A. N. Belozersky Institute of Physico–Chemical Biology, Moscow State University, Moscow 119899, Russia
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Sergey L. Mekhedov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Alexander Sorokin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Alexis Dufresne
- Station Biologique, Unité Mixte de Recherche 7144, Centre National de la Recherche Scientifique et Université Paris 6, BP74, F-29682 Roscoff Cedex, France
| | - Frédéric Partensky
- Station Biologique, Unité Mixte de Recherche 7144, Centre National de la Recherche Scientifique et Université Paris 6, BP74, F-29682 Roscoff Cedex, France
| | - Henry Burd
- Integrated Genomics, Inc., Chicago, IL 60612; and
| | | | - Robert Haselkorn
- **Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637
| | - Michael Y. Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| |
Collapse
|
24
|
Abstract
Oxygenic photosynthesis is the principal producer of both oxygen and organic matter on earth. The primary step in this process--the conversion of sunlight into chemical energy--is driven by four multi-subunit membrane protein complexes named photosystem I, photosystem II, cytochrome b(6)f complex and F-ATPase. Photosystem I generates the most negative redox potential in nature and thus largely determines the global amount of enthalpy in living systems. The recent structural determination of PSI complexes from cyanobacteria and plants sheds light on the evolutionary forces that shaped oxygenic photosynthesis. The fortuitous formation of our solar system in a space plentiful of elements, our distance from the sun and the long time of uninterrupted evolution enabled the perfection of photosynthesis and the evolution of advanced organisms. The available structural information complements the knowledge gained from genomic and proteomic data to illustrate a more precise scenario for the evolution of life systems on earth.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, The Daniella Rich Institute for Structural Biology, Tel Aviv University, Israel.
| | | |
Collapse
|
25
|
Shi T, Bibby TS, Jiang L, Irwin AJ, Falkowski PG. Protein Interactions Limit the Rate of Evolution of Photosynthetic Genes in Cyanobacteria. Mol Biol Evol 2005; 22:2179-89. [PMID: 16014867 DOI: 10.1093/molbev/msi216] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Using a bioinformatic approach, we analyzed the correspondence in genetic distance matrices between all possible pairwise combinations of 82 photosynthetic genes in 10 species of cyanobacteria. Our analysis reveals significant correlations between proteins linked in a conserved gene order and between structurally identified interacting protein scaffolds that coordinate the binding of cofactors involved in photosynthetic electron transport. Analyses of amino acid substitution rates suggest that the tempo of evolution of genes encoding core metabolic processes in the photosynthetic apparatus is highly constrained by protein-protein, protein-lipid, and protein-cofactor interactions (collectively called "protein interactions"). These interactions are critical for energy transduction, primary charge separation, and electron transport and effectively act as an internal selection pressure governing the conservation of clusters of photosynthetic genes in oxygenic prokaryotic photoautotrophs. Consequently, although several proteins within the photosynthetic apparatus are biophysically and physiologically inefficient, selection has not significantly altered the genes encoding these essential proteins over billions of years of evolution. In effect, these core proteins have become "frozen metabolic accidents."
Collapse
Affiliation(s)
- Tuo Shi
- Environmental Biophysics and Molecular Ecology Program, Institute of Marine and Coastal Sciences, Rutgers University, USA
| | | | | | | | | |
Collapse
|
26
|
Raymond J, Blankenship RE. The evolutionary development of the protein complement of photosystem 2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1655:133-9. [PMID: 15100025 DOI: 10.1016/j.bbabio.2003.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Accepted: 10/21/2003] [Indexed: 10/26/2022]
Abstract
During the transition from anoxygenic to oxygenic photosynthesis, the Type 2 reaction center underwent many changes, none so dramatic as the remarkable increase in complexity at the protein level, from only three or four subunits in the anoxygenic reaction center to possibly more than 25 in Photosystem 2 (PS2). The evolutionary source of most of these proteins is enigmatic, as they have no apparent homology to any other proteins in existing databases. However, some of the proteins in PS2 have apparent homologies to each other, suggesting ancient gene duplications have played an important role in the development of the complex. These homologies include the well-known examples of the D1 and D2 reaction center core proteins and the CP43 and CP47 core antenna proteins. In addition, PsbE and PsbF, the two subunits comprising cytochrome b-559, show homology to each other, suggesting that a homodimeric cytochrome preceded the heterodimeric one. Other potential homologies that appear to be statistically significant include PsbV with the N-terminal part of D1 and PsbT with PsbI. Most of the proteins that make up the photosynthetic apparatus bear no relation to any other proteins from any source. This suggests that a period of remarkable evolutionary innovation took place when the ability to make oxygen was invented. This was probably a response to the production of highly toxic oxygen and these new proteins served to protect and repair the photosynthetic apparatus from the harmful effects of oxygen.
Collapse
Affiliation(s)
- Jason Raymond
- Blakenship Laboratory, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA.
| | | |
Collapse
|
27
|
Abstract
Based on the current model of its structure and function, photosystem II (PSII) seems to have evolved from an ancestor that was homodimeric in terms of its protein core and contained a special pair of chlorophylls as the photo-oxidizable cofactor. It is proposed that the key event in the evolution of PSII was a mutation that resulted in the separation of the two pigments that made up the special chlorophyll pair, making them into two chlorophylls that were neither special nor paired. These ordinary chlorophylls, along with the two adjacent monomeric chlorophylls, were very oxidizing: a property proposed to be intrinsic to monomeric chlorophylls in the environment provided by reaction centre (RC) proteins. It seems likely that other (mainly electrostatic) changes in the environments of the pigments probably tuned their redox potentials further but these changes would have been minor compared with the redox jump imposed by splitting of the special pair. This sudden increase in redox potential allowed the development of oxygen evolution. The highly oxidizing homodimeric RC would probably have been not only inefficient in terms of photochemistry and charge storage but also wasteful in terms of protein or pigments undergoing damage due to the oxidative chemistry. These problems would have constituted selective pressures in favour of the lop-sided, heterodimeric system that exists as PSII today, in which the highly oxidized species are limited to only one side of the heterodimer: the sacrificial, rapidly turned-over D1 protein. It is also suggested that one reason for maintaining an oxidizable tyrosine, TyrD, on the D2 side of the RC, is that the proton associated with its tyrosyl radical, has an electrostatic role in confining P(+) to the expendable D1 side.
Collapse
Affiliation(s)
- A W Rutherford
- Service de Bioénergétique, URA CNRS 2096, Bat 532, CEA Saclay, 91191 Gif-sur-Yvette, France.
| | | |
Collapse
|
28
|
Green BR. The Evolution of Light-harvesting Antennas. LIGHT-HARVESTING ANTENNAS IN PHOTOSYNTHESIS 2003. [DOI: 10.1007/978-94-017-2087-8_4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
29
|
Raymond J, Zhaxybayeva O, Gogarten JP, Gerdes SY, Blankenship RE. Whole-genome analysis of photosynthetic prokaryotes. Science 2002; 298:1616-20. [PMID: 12446909 DOI: 10.1126/science.1075558] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The process of photosynthesis has had profound global-scale effects on Earth; however, its origin and evolution remain enigmatic. Here we report a whole-genome comparison of representatives from all five groups of photosynthetic prokaryotes and show that horizontal gene transfer has been pivotal in their evolution. Excluding a small number of orthologs that show congruent phylogenies, the genomes of these organisms represent mosaics of genes with very different evolutionary histories. We have also analyzed a subset of "photosynthesis-specific" genes that were elucidated through a differential genome comparison. Our results explain incoherencies in previous data-limited phylogenetic analyses of phototrophic bacteria and indicate that the core components of photosynthesis have been subject to lateral transfer.
Collapse
Affiliation(s)
- Jason Raymond
- Department of Chemistry and Biochemistry, Arizona State University (ASU), Tempe, AZ 85287-1604, USA
| | | | | | | | | |
Collapse
|
30
|
Goussias C, Boussac A, Rutherford AW. Photosystem II and photosynthetic oxidation of water: an overview. Philos Trans R Soc Lond B Biol Sci 2002; 357:1369-81; discussion 1419-20. [PMID: 12437876 PMCID: PMC1693055 DOI: 10.1098/rstb.2002.1134] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Conceptually, photosystem II, the oxygen-evolving enzyme, can be divided into two parts: the photochemical part and the catalytic part. The photochemical part contains the ultra-fast and ultra-efficient light-induced charge separation and stabilization steps that occur when light is absorbed by chlorophyll. The catalytic part, where water is oxidized, involves a cluster of Mn ions close to a redox-active tyrosine residue. Our current understanding of the catalytic mechanism is mainly based on spectroscopic studies. Here, we present an overview of the current state of knowledge of photosystem II, attempting to delineate the open questions and the directions of current research.
Collapse
Affiliation(s)
- Charilaos Goussias
- Service de Bioénergétique, URA CNRS 2096, Bat 532, CEA Saclay, 91191 Gif-sur-Yvette, France
| | | | | |
Collapse
|
31
|
Fyfe PK, Jones MR, Heathcote P. Insights into the evolution of the antenna domains of Type-I and Type-II photosynthetic reaction centres through homology modelling. FEBS Lett 2002; 530:117-23. [PMID: 12387877 DOI: 10.1016/s0014-5793(02)03436-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The (bacterio)chlorophylls of photosynthetic antenna and reaction centre complexes are bound to the protein via a fifth, axial ligand to the central magnesium atom. A number of the amino acids identified as providing such ligands are conserved between the large antenna of the cyanobacterial Type-I reaction centre and smaller antennas of the Type-I reaction centres of green sulphur bacteria and heliobacteria, and these numbers match closely the estimated number of antenna bacteriochlorophylls in the latter. The possible organisation of the antenna in the latter reaction centres is discussed, as is the mechanism by which the more pigment-rich antenna of the cyanobacterial reaction centre evolved. The homology modelling approach is also extended to the six-helix antenna proteins CP47 and CP43 associated with the Photosystem II reaction centre.
Collapse
Affiliation(s)
- Paul K Fyfe
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, UK
| | | | | |
Collapse
|
32
|
Xiong J, Bauer CE. A cytochrome b origin of photosynthetic reaction centers: an evolutionary link between respiration and photosynthesis. J Mol Biol 2002; 322:1025-37. [PMID: 12367526 DOI: 10.1016/s0022-2836(02)00822-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The evolutionary origin of photosynthetic reaction centers has long remained elusive. Here, we use sequence and structural analysis to demonstrate an evolutionary link between the cytochrome b subunit of the cytochrome bc(1) complex and the core polypeptides of the photosynthetic bacterial reaction center. In particular, we have identified an area of significant sequence similarity between a three contiguous membrane-spanning domain of cytochrome b, which contains binding sites for two hemes, and a three contiguous membrane-spanning domain in the photosynthetic reaction center core subunits, which contains binding sites for cofactors such as (bacterio)chlorophylls, (bacterio)pheophytin and a non-heme iron. Three of the four heme ligands in cytochrome b are found to be conserved with the cofactor ligands in the reaction center polypeptides. Since cytochrome b and reaction center polypeptides both bind tetrapyrroles and quinones for electron transfer, the observed sequence, functional and structural similarities can best be explained with the assumption of a common evolutionary origin. Statistical analysis further supports a distant but significant homologous relationship. On the basis of previous evolutionary analyses that established a scenario that respiration evolved prior to photosynthesis, we consider it likely that cytochrome b is the evolutionary precursor for type II reaction center apoproteins. With a structural analysis confirming a common evolutionary origin of both type I and type II reaction centers, we further propose a novel "reaction center apoprotein early" hypothesis to account for the development of photosynthetic reaction center holoproteins.
Collapse
Affiliation(s)
- Jin Xiong
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
33
|
Abstract
The origin of photosynthesis is a fundamental biological question that has eluded researchers for decades. The complexity of the origin and evolution of photosynthesis is a result of multiple photosynthetic components having independent evolutionary pathways. Indeed, evolutionary scenarios have been established for only a few photosynthetic components. Phylogenetic analysis of Mg-tetrapyrrole biosynthesis genes indicates that most anoxygenic photosynthetic organisms are ancestral to oxygen-evolving cyanobacteria and that the purple bacterial lineage may contain the most ancestral form of this pigment biosynthesis pathway. The evolutionary path of type I and type II reaction center apoproteins is still unresolved owing to the fact that a unified evolutionary tree cannot be generated for these divergent reaction center subunits. However, evidence for a cytochrome b origin for the type II reaction center apoproteins is emerging. Based on the combined information for both photopigments and reaction centers, a unified theory for the evolution of reaction center holoproteins is provided. Further insight into the evolution of photosynthesis will have to rely on additional broader sampling of photosynthesis genes from divergent photosynthetic bacteria.
Collapse
Affiliation(s)
- Jin Xiong
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA.
| | | |
Collapse
|
34
|
Deligiannakis Y, Rutherford AW. Electron spin echo envelope modulation spectroscopy in photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1507:226-46. [PMID: 11687217 DOI: 10.1016/s0005-2728(01)00201-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The applications of electron spin echo envelope modulation (ESEEM) spectroscopy to study paramagnetic centers in photosystem I (PSI) are reviewed with special attention to the novel spectroscopic techniques applied and the structural information obtained. We briefly summarize the physical principles and experimental techniques of ESEEM, the spectral shapes and the methods for their analysis. In PSI, ESEEM spectroscopy has been used to the study of the cation radical form of the primary electron donor chlorophyll species, P(700)(+), and the phyllosemiquinone anion radical, A(1)(-), that acts as a low-potential electron carrier. For P(700)(+), ESEEM has contributed to a debate concerning whether the cation is localized on a one or two chlorophyll molecules. This debate is treated in detail and relevant data from other methods, particularly electron nuclear double resonance (ENDOR), are also discussed. It is concluded that the ESEEM and ENDOR data can be explained in terms of five distinct nitrogen couplings, four from the tetrapyrrole ring and a fifth from an axial ligand. Thus the ENDOR and ESEEM data can be fully accounted for based on the spin density being localized on a single chlorophyll molecule. This does not eliminate the possibility that some of the unpaired spin is shared with the other chlorophyll of P(700)(+); so far, however, no unambiguous evidence has been obtained from these electron paramagnetic resonance methods. The ESEEM of the phyllosemiquinone radical A(1)(-) provided the first evidence for a tryptophan molecule pi-stacked over the semiquinone and for a weaker interaction from an additional nitrogen nucleus. Recent site-directed mutagenesis studies verified the presence of the tryptophan close to A(1), while the recent crystal structure showed that the tryptophan was indeed pi-stacked and that a weak potential H-bond from an amide backbone to one of the (semi)quinone carbonyls is probably the origin of the to the second nitrogen coupling seen in the ESEEM. ESEEM has already played an important role in the structural characterization on PSI and since it specifically probes the radical forms of the chromophores and their protein environment, the information obtained is complimentary to the crystallography. ESEEM then will continue to provide structural information that is often unavailable using other methods.
Collapse
Affiliation(s)
- Y Deligiannakis
- Laboratory of Physical Chemistry, Department of Environment and Natural Resources, University of Ioannina, Greece.
| | | |
Collapse
|
35
|
Baymann F, Brugna M, Mühlenhoff U, Nitschke W. Daddy, where did (PS)I come from? BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1507:291-310. [PMID: 11687221 DOI: 10.1016/s0005-2728(01)00209-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The reacton centre I (RCI)-type photosystems from plants, cyano-, helio- and green sulphur bacteria are compared and the essential properties of an archetypal RCI are deduced. Species containing RCI-type photosystems most probably cluster together on a common branch of the phylogenetic tree. The predicted branching order is green sulphur, helio- and cyanobacteria. Striking similarities between RCI- and RCII-type photosystems recently became apparent in the three-dimensional structures of photosystem I (PSI), PSII and RCII. The phylogenetic relationship between all presently known photosystems is analysed suggesting (a) RCI as the ancestral photosystem and (b) the descendence of PSII from RCI via gene duplication and gene splitting. An evolutionary model trying to rationalise available data is presented.
Collapse
Affiliation(s)
- F Baymann
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Biologie Structurale et Microbiologie, Marseille, France
| | | | | | | |
Collapse
|
36
|
Neerken S, Amesz J. The antenna reaction center complex of heliobacteria: composition, energy conversion and electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1507:278-90. [PMID: 11687220 DOI: 10.1016/s0005-2728(01)00207-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A survey is given of various aspects of the photosynthetic processes in heliobacteria. The review mainly refers to results obtained since 1995, which had not been covered earlier. It first discusses the antenna organization and pigmentation. The pigments of heliobacteria include some unusual species: bacteriochlorophyll (BChl) g, the main pigment, 8(1) hydroxy chlorophyll a, which acts as primary electron acceptor, and 4,4'-diaponeurosporene, a carotenoid with 30 carbon atoms. Energy conversion within the antenna is very fast: at room temperature thermal equilibrium among the approx. 35 BChls g of the antenna is largely completed within a few ps. This is then followed by primary charge separation, involving a dimer of BChl g (P798) as donor, but recent evidence indicates that excitation of the acceptor pigment 8(1) hydroxy chlorophyll a gives rise to an alternative primary reaction not involving excited P798. The final section of the review concerns secondary electron transfer, an area that is relatively poorly known in heliobacteria.
Collapse
Affiliation(s)
- S Neerken
- Department of Biophysics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA, Leiden, The Netherlands.
| | | |
Collapse
|
37
|
Abstract
Helical membrane protein folding and oligomerization can be usefully conceptualized as involving two energetically distinct stages-the formation and subsequent side-to-side association of independently stable transbilayer helices. The interactions of helices with the bilayer, with prosthetic groups, and with each other are examined in the context of recent evidence. We conclude that the two-stage concept remains useful as an approach to simplifying discussions of stability, as a framework for folding concepts, and as a basis for understanding membrane protein evolution.
Collapse
Affiliation(s)
- J L Popot
- Laboratoire de Physicochimie Moléculaire des Membranes Biologiques, Centre National de la Recherche Scientifique UPR 9052, Institut de Biologie Physico-Chimique, F-75005 Paris, France.
| | | |
Collapse
|
38
|
Gupta RS, Mukhtar T, Singh B. Evolutionary relationships among photosynthetic prokaryotes (Heliobacterium chlorum, Chloroflexus aurantiacus, cyanobacteria, Chlorobium tepidum and proteobacteria): implications regarding the origin of photosynthesis. Mol Microbiol 1999; 32:893-906. [PMID: 10361294 DOI: 10.1046/j.1365-2958.1999.01417.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The presence of shared conserved insertions or deletions in proteins (referred to as signature sequences) provides a powerful means to deduce the evolutionary relationships among prokaryotic organisms. This approach was used in the present work to deduce the branching orders of various eubacterial taxa consisting of photosynthetic organisms. For this purpose, portions of the Hsp60 and Hsp70 genes, covering known signature sequence regions, were PCR-amplified and sequenced from Heliobacterium chlorum, Chloroflexus aurantiacus and Chlorobium tepidum. This information was integrated with sequence data for several other proteins from numerous species to deduce the branching orders of different photosynthetic taxa. Based on signature sequences that are present in different proteins, it is possible to infer that the various eubacterial phyla evolved from a common ancestor in the following order: low G+C Gram-positive (H. chlorum) --> high G+C Gram-positive --> Deinococcus-Thermus --> green non-sulphur bacteria (Cf. aurantiacus ) --> cyanobacteria --> spirochaetes --> Chlamydia-Cytophaga-Aquifex-flavobacteria-green sulphur bacteria (Cb. tepidum) --> proteobacteria (alpha, delta and epsilon) and --> proteobacteria (beta and gamma). The members of the Heliobacteriaceae family that contain a Fe-S type of reaction centre (RC-1) and represent the sole photosynthetic phylum from the Gram-positive or monoderm group of prokaryotes are indicated to be the most ancestral of the photosynthetic lineages. Among the Gram-negative bacteria or diderm prokaryotes, green non-sulphur bacteria such as Cf. aurantiacus, which contains a pheophytin-quinone type of reaction centre (RC-2), are indicated to have evolved very early. Thus, the organisms containing either RC-1 or RC-2 existed before the evolution of cyanobacteria, which contain both these reaction centres to carry out oxygenic photosynthesis. The eubacterial divisions consisting of green sulphur bacteria and proteobacteria are indicated to have diverged after cyanobacteria. Some implications of these results concerning the origin of photosynthesis and the earliest prokaryotic fossils are discussed.
Collapse
Affiliation(s)
- R S Gupta
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada L8N 3Z5.
| | | | | |
Collapse
|
39
|
Affiliation(s)
- J Barber
- Wolfson Laboratories, Biochemistry Dept, Imperial College of Science, Technology and Medicine, London, UK
| | | | | | | |
Collapse
|
40
|
Xiong J, Inoue K, Bauer CE. Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis. Proc Natl Acad Sci U S A 1998; 95:14851-6. [PMID: 9843979 PMCID: PMC24539 DOI: 10.1073/pnas.95.25.14851] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/1998] [Accepted: 10/13/1998] [Indexed: 11/18/2022] Open
Abstract
A DNA sequence has been obtained for a 35.6-kb genomic segment from Heliobacillus mobilis that contains a major cluster of photosynthesis genes. A total of 30 ORFs were identified, 20 of which encode enzymes for bacteriochlorophyll and carotenoid biosynthesis, reaction-center (RC) apoprotein, and cytochromes for cyclic electron transport. Donor side electron-transfer components to the RC include a putative RC-associated cytochrome c553 and a unique four-large-subunit cytochrome bc complex consisting of Rieske Fe-S protein (encoded by petC), cytochrome b6 (petB), subunit IV (petD), and a diheme cytochrome c (petX). Phylogenetic analysis of various photosynthesis gene products indicates a consistent grouping of oxygenic lineages that are distinct and descendent from anoxygenic lineages. In addition, H. mobilis was placed as the closest relative to cyanobacteria, which form a monophyletic origin to chloroplast-based photosynthetic lineages. The consensus of the photosynthesis gene trees also indicates that purple bacteria are the earliest emerging photosynthetic lineage. Our analysis also indicates that an ancient gene-duplication event giving rise to the paralogous bchI and bchD genes predates the divergence of all photosynthetic groups. In addition, our analysis of gene duplication of the photosystem I and photosystem II core polypeptides supports a "heterologous fusion model" for the origin and evolution of oxygenic photosynthesis.
Collapse
Affiliation(s)
- J Xiong
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
41
|
van der Est A, Hager-Braun C, Leibl W, Hauska G, Stehlik D. Transient electron paramagnetic resonance spectroscopy on green-sulfur bacteria and heliobacteria at two microwave frequencies. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1409:87-98. [PMID: 9838060 DOI: 10.1016/s0005-2728(98)00152-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Spin polarized transient EPR spectra taken at X-band (9 GHz) and K-band (24 GHz) of membrane fragments of Chlorobium tepidum and Heliobacillus mobilis are presented along with the spectra of two fractions obtained in the purification of reaction centers (RC) from C. tepidum. The lifetime of P+. is determined by measuring the decay of the EPR signals following relaxation of the initial spin polarization. All samples except one of the RC fractions show evidence of light induced charge separation and formation of chlorophyll triplet states. The lifetime of P+. is found to be biexponential with components of 1.5 ms and 30 ms for C. tepidum and 1.0 and 4.5 ms for Hc. mobilis at 100 K. In both cases, the rates are assigned to recombination from F-X. The spin polarized radical pair spectra for both species are similar and those from Hc. mobilis at room temperature and 100 K are identical. In all cases, an emission/absorption polarization pattern with a net absorption is observed. A slight narrowing of the spectra and a larger absorptive net polarization is found at K-band. No out-of-phase echo modulation is observed. Taken together, the recombination kinetics, the frequency dependence of the spin polarization and the absence of an out-of-phase echo signal lead to the assignment of the spectra to the contribution from P+. to the state P+.F-X. The origin of the net polarization and its frequency dependence are discussed in terms of singlet-triplet mixing in the precursor. It is shown that the field-dependent polarization expected to develop during the 600-700 ps lifetime of P+.A-.0 is in qualitative agreement with the observed spectra. The identity that the acceptor preceding FX and the conflicting evidence from EPR, optical methods and chemical analyses of the samples are discussed.
Collapse
Affiliation(s)
- A van der Est
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
42
|
Schubert WD, Klukas O, Saenger W, Witt HT, Fromme P, Krauss N. A common ancestor for oxygenic and anoxygenic photosynthetic systems: a comparison based on the structural model of photosystem I. J Mol Biol 1998; 280:297-314. [PMID: 9654453 DOI: 10.1006/jmbi.1998.1824] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 4 A structural model of photosystem I (PSI) has elucidated essential features of this protein complex. Inter alia, it demonstrates that the core proteins of PSI, PsaA and PsaB each consist of an N-terminal antenna-binding domain, and a C-terminal reaction center (RC)-domain. A comparison of the RC-domain of PSI and the photosynthetic RC of purple bacteria (PbRC), reveals significantly analogous structures. This provides the structural support for the hypothesis that the two RC-types (I and II) share a common evolutionary origin. Apart from a similar set of constituent cofactors of the electron transfer system, the analogous features include a comparable cofactor arrangement and a corresponding secondary structure motif of the RC-cores. Despite these analogies, significant differences are evident, particularly as regards the distances between and the orientation of individual cofactors, and the length and orientation of alpha-helices. Inferred roles of conserved amino acids are discussed for PSI, photosystem II (PSII), photosystem C (PSC, green sulfur bacteria) and photosystem H (PSH, heliobacteria). Significant sequence homology between the N-terminal, antenna-binding domains of the core proteins of type-I RCs, PsaA, PsaB, PscA and PshA (of PSI, PSC and PSH respectively) with the antenna-binding subunits CP43 and CP47 of PSII indicate that PSII has a modular structure comparable to that of PSI.
Collapse
Affiliation(s)
- W D Schubert
- Institut für Kristallographie, Freie Universität Berlin, Takustr. 6, Berlin, D-14195, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Fromme P, Witt HT. Improved isolation and crystallization of photosystem I for structural analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1998. [DOI: 10.1016/s0005-2728(98)00059-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
|
45
|
Krauss N, Schubert WD, Klukas O, Fromme P, Witt HT, Saenger W. Photosystem I at 4 A resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system. NATURE STRUCTURAL BIOLOGY 1996; 3:965-73. [PMID: 8901876 DOI: 10.1038/nsb1196-965] [Citation(s) in RCA: 287] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The 4 A X-ray structure model of trimeric photosystem I of the cyanobacterium Synechococcus elongatus reveals 31 transmembrane, nine surface and three stromal alpha-helices per monomer, assigned to the 11 protein subunits: PsaA and PsaB are related by a pseudo two-fold axis normal to the membrane plane, along which the electron transfer pigments are arranged. 65 antenna chlorophyll a (Chl a) molecules separated by < or = 16 A form an oval, clustered net continuous with the electron transfer chain through the second and third Chl a pairs of the electron transfer system. This suggests a dual role for these Chl a both in excitation energy and electron transfer. The architecture of the protein core indicates quinone and iron-sulphur type reaction centres to have a common ancestor.
Collapse
Affiliation(s)
- N Krauss
- Institut für Kristallographie, Freie Universität Berlin, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Fromme P, Witt H, Schubert WD, Klukas O, Saenger W, Krauβ N. Structure of Photosystem I at 4.5 Å resolution: a short review including evolutionary aspects. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1996. [DOI: 10.1016/0005-2728(96)00053-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
47
|
Amesz J. The heliobacteria, a new group of photosynthetic bacteria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1995. [DOI: 10.1016/1011-1344(95)07207-i] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Feiler U, Albouy D, Robert B, Mattioli TA. Symmetric structural features and binding site of the primary electron donor in the reaction center of Chlorobium. Biochemistry 1995; 34:11099-105. [PMID: 7669767 DOI: 10.1021/bi00035a015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The protein binding interactions of the constituent bacteriochlorophyll a molecules of the primary electron donor, P840, in isolated reaction centers from Chlorobium limicola f thiosulphatophilum and the electronic symmetry of the radical cation P840+. were determined using near-infrared Fourier transform (FT) Raman spectroscopy excited at 1064 nm. The FT Raman vibrational spectrum of P840 indicates that it is constituted of a single population of BChl a molecules which are spectrally indistinguishable. The BChl a molecules of P840 are pentacoordinated with only one axial ligand on the central Mg atom, and the pi-conjugated C2 acetyl and C9 keto carbonyls are free of hydrogen-bonding interactions. The FT Raman spectrum of P840+. exhibits a 1707 cm-1 band attributable to a BChl a C9 keto carbonyl group vibrational frequency that has upshifted 16 cm-1 upon oxidation of P840; this upshift is exactly one-half of that expected for the one-electron oxidation of monomeric BChl a in vitro. The 16 cm-1 upshift, thus, indicates that the resulting +1 charge is equally shared between two BChl a molecules. This situation is markedly different from that of the oxidized primary donor of the purple bacterial reaction center of Rhodobacter sphaeroides, (i) which exhibits a 1717 cm-1 band that has upshifted 26 cm-1, indicating an asymmetric distribution of the resulting +1 charge over the two constituent BChl a molecules, and (ii) whose H-bonding pattern with respect to the pi-conjugated carbonyl groups is asymmetric.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- U Feiler
- Section de Biophysique des Protéines et des Membranes, DBCM, CEA and URA 1290 CNRS, Centre d'Etudes de Saclay, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
49
|
Webber AN, Bingham SE, Lee H. Genetic engineering of thylakoid protein complexes by chloroplast transformation in Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 1995; 44:191-205. [PMID: 24307038 DOI: 10.1007/bf00018309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/1994] [Accepted: 03/01/1995] [Indexed: 06/02/2023]
Abstract
Chloroplast transformation of Chlamydomonas reinhardtii has developed into a powerful tool for studying the structure, function and assembly of thylakoid protein complexes in a eukaryotic organism. In this article we review the progress that is being made in the development of procedures for efficient chloroplast transformation. This focuses on the development of selectable markers and the use of Chlamydomonas mutants, individually lacking thylakoid protein complexes, as recipients. Chloroplast transformation has now been used to engineer all four major thylakoid protein complexes, photosystem II, photosystem I, cytochrome b 6/f and ATP synthase. These results are discussed with an emphasis on new insights into assembly and function of these complexes in chloroplasts as compared with their prokaryotic counterparts.
Collapse
Affiliation(s)
- A N Webber
- Department of Botany and Center for the Study of Early Events in Photosynthesis, Arizona State University, Box 871601, 85287-1601, Tempe, AZ, USA
| | | | | |
Collapse
|
50
|
Bendall DS, Manasse RS. Cyclic photophosphorylation and electron transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1995. [DOI: 10.1016/0005-2728(94)00195-b] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|