1
|
Ponomartsev SV, Sinenko SA, Tomilin AN. Human Artificial Chromosomes and Their Transfer to Target Cells. Acta Naturae 2022; 14:35-45. [PMID: 36348716 PMCID: PMC9611860 DOI: 10.32607/actanaturae.11670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 07/12/2022] [Indexed: 11/02/2023] Open
Abstract
Human artificial chromosomes (HACs) have been developed as genetic vectors with the capacity to carry large transgenic constructs or entire gene loci. HACs represent either truncated native chromosomes or de novo synthesized genetic constructs. The important features of HACs are their ultra-high capacity and ability to self-maintain as independent genetic elements, without integrating into host chromosomes. In this review, we discuss the development and construction methods, structural and functional features, as well as the areas of application of the main HAC types. Also, we address one of the most technically challenging and time-consuming steps in this technology - the transfer of HACs from donor to recipient cells.
Collapse
Affiliation(s)
- S. V. Ponomartsev
- Institute of Cytology Russian Academy of Sciences, St. Petersburg, 194064 Russia
| | - S. A. Sinenko
- Institute of Cytology Russian Academy of Sciences, St. Petersburg, 194064 Russia
| | - A. N. Tomilin
- Institute of Cytology Russian Academy of Sciences, St. Petersburg, 194064 Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034 Russia
| |
Collapse
|
2
|
Yang J, Liu X, Huang Y, He L, Zhang W, Ren J, Wang Y, Wu J, Wu X, Shan L, Yang X, Sun L, Liang J, Zhang Y, Shang Y. TRPS1 drives heterochromatic origin refiring and cancer genome evolution. Cell Rep 2021; 34:108814. [PMID: 33691114 DOI: 10.1016/j.celrep.2021.108814] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/18/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Exploitation of naturally occurring genetic mutations could empower the discovery of novel aspects of established cancer genes. We report here that TRPS1, a gene linked to the tricho-rhino-phalangeal syndrome (TRPS) and recently identified as a potential breast cancer driver, promotes breast carcinogenesis through regulating replication. Epigenomic decomposition of TRPS1 landscape reveals nearly half of H3K9me3-marked heterochromatic origins are occupied by TRPS1, where it encourages the chromatin loading of APC/C, resulting in uncontrolled origin refiring. TRPS1 binds to the genome through its atypical H3K9me3 reading via GATA and IKAROS domains, while TRPS-related mutations affect its chromatin binding, replication boosting, and tumorigenicity. Concordantly, overexpression of wild-type but not TRPS-associated mutants of TRPS1 is sufficient to drive cancer genome amplifications, which experience an extrachromosomal route and dynamically evolve to confer therapeutic resistance. Together, these results uncover a critical function of TRPS1 in driving heterochromatin origin firing and breast cancer genome evolution.
Collapse
Affiliation(s)
- Jianguo Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Xiaoping Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Yunchao Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Lin He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Wenting Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Jie Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jiajing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaodi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaohan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Luyang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Jing Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China.
| | - Yongfeng Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
3
|
Epigenetic Factors That Control Pericentric Heterochromatin Organization in Mammals. Genes (Basel) 2020; 11:genes11060595. [PMID: 32481609 PMCID: PMC7349813 DOI: 10.3390/genes11060595] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Pericentric heterochromatin (PCH) is a particular form of constitutive heterochromatin that is localized to both sides of centromeres and that forms silent compartments enriched in repressive marks. These genomic regions contain species-specific repetitive satellite DNA that differs in terms of nucleotide sequences and repeat lengths. In spite of this sequence diversity, PCH is involved in many biological phenomena that are conserved among species, including centromere function, the preservation of genome integrity, the suppression of spurious recombination during meiosis, and the organization of genomic silent compartments in the nucleus. PCH organization and maintenance of its repressive state is tightly regulated by a plethora of factors, including enzymes (e.g., DNA methyltransferases, histone deacetylases, and histone methyltransferases), DNA and histone methylation binding factors (e.g., MECP2 and HP1), chromatin remodeling proteins (e.g., ATRX and DAXX), and non-coding RNAs. This evidence helps us to understand how PCH organization is crucial for genome integrity. It then follows that alterations to the molecular signature of PCH might contribute to the onset of many genetic pathologies and to cancer progression. Here, we describe the most recent updates on the molecular mechanisms known to underlie PCH organization and function.
Collapse
|
4
|
Kinetochore Function from the Bottom Up. Trends Cell Biol 2017; 28:22-33. [PMID: 28985987 DOI: 10.1016/j.tcb.2017.09.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 02/06/2023]
Abstract
During a single human lifetime, nearly one quintillion chromosomes separate from their sisters and transit to their destinations in daughter cells. Unlike DNA replication, chromosome segregation has no template, and, unlike transcription, errors frequently lead to a total loss of cell viability. Rapid progress in recent years has shown how kinetochores enable faithful execution of this process by connecting chromosomal DNA to microtubules. These findings have transformed our idea of kinetochores from cytological features to immense molecular machines and now allow molecular interpretation of many long-appreciated kinetochore functions. In this review we trace kinetochore protein connectivity from chromosomal DNA to microtubules, relating new findings to important points of regulation and function.
Collapse
|
5
|
|
6
|
Katona RL. De novo formed satellite DNA-based mammalian artificial chromosomes and their possible applications. Chromosome Res 2015; 23:143-57. [DOI: 10.1007/s10577-014-9458-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Tóth A, Fodor K, Praznovszky T, Tubak V, Udvardy A, Hadlaczky G, Katona RL. Novel method to load multiple genes onto a mammalian artificial chromosome. PLoS One 2014; 9:e85565. [PMID: 24454889 PMCID: PMC3893256 DOI: 10.1371/journal.pone.0085565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/03/2013] [Indexed: 01/05/2023] Open
Abstract
Mammalian artificial chromosomes are natural chromosome-based vectors that may carry a vast amount of genetic material in terms of both size and number. They are reasonably stable and segregate well in both mitosis and meiosis. A platform artificial chromosome expression system (ACEs) was earlier described with multiple loading sites for a modified lambda-integrase enzyme. It has been shown that this ACEs is suitable for high-level industrial protein production and the treatment of a mouse model for a devastating human disorder, Krabbe's disease. ACEs-treated mutant mice carrying a therapeutic gene lived more than four times longer than untreated counterparts. This novel gene therapy method is called combined mammalian artificial chromosome-stem cell therapy. At present, this method suffers from the limitation that a new selection marker gene should be present for each therapeutic gene loaded onto the ACEs. Complex diseases require the cooperative action of several genes for treatment, but only a limited number of selection marker genes are available and there is also a risk of serious side-effects caused by the unwanted expression of these marker genes in mammalian cells, organs and organisms. We describe here a novel method to load multiple genes onto the ACEs by using only two selectable marker genes. These markers may be removed from the ACEs before therapeutic application. This novel technology could revolutionize gene therapeutic applications targeting the treatment of complex disorders and cancers. It could also speed up cell therapy by allowing researchers to engineer a chromosome with a predetermined set of genetic factors to differentiate adult stem cells, embryonic stem cells and induced pluripotent stem (iPS) cells into cell types of therapeutic value. It is also a suitable tool for the investigation of complex biochemical pathways in basic science by producing an ACEs with several genes from a signal transduction pathway of interest.
Collapse
Affiliation(s)
- Anna Tóth
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Katalin Fodor
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Tünde Praznovszky
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Vilmos Tubak
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Andor Udvardy
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Gyula Hadlaczky
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Robert L. Katona
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
8
|
Greene AL, Perkins EL. Downstream bioengineering of ACE chromosomes for incorporation of site-specific recombination cassettes. Methods Mol Biol 2011; 738:127-140. [PMID: 21431724 DOI: 10.1007/978-1-61779-099-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Advances in mammalian artificial chromosome technology have made chromosome-based vector technology amenable to a variety of biotechnology applications including cellular protein production, genomics, and animal transgenesis. A pivotal aspect of this technology is the ability to generate artificial chromosomes de novo, transfer them to a variety of cells, and perform downstream engineering of artificial chromosomes in a tractable and rational manner. Previously, we have described an alternative artificial chromosome technology termed the ACE chromosome system, where the ACE platform chromosome contains a multitude of site-specific, recombination sites incorporated during the creation of the ACE platform chromosome. In this chapter we review a variant of the ACE chromosome technology whereby site-specific, recombination sites can be integrated into the ACE chromosome following its de novo synthesis. This variation allows insertion of user-defined, site-specific, recombination systems into an existing ACE platform chromosome. These bioengineered ACE platform chromosomes, containing user-defined recombination sites, represent an ideal circuit board to which an array of genetic factors can be plugged-in and expressed for various research and therapeutic applications.
Collapse
Affiliation(s)
- Amy L Greene
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | | |
Collapse
|
9
|
Csonka E. De novo generation of satellite DNA-based artificial chromosomes by induced large-scale amplification. Methods Mol Biol 2011; 738:111-25. [PMID: 21431723 DOI: 10.1007/978-1-61779-099-7_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mammalian artificial chromosomes (MACs) are engineered chromosomes with defined genetic content that can function as non-integrating vectors with large carrying capacity and stability. The large carrying capacity allows the engineering of MACs with multiple copies of the same transgene, gene complexes, and to include regulatory elements necessary for the regulated expression of transgene(s). In recent years, different approaches have been explored to generate MACs (Vos Curr Opin Genet Dev 8:351-359, 1998; Danielle et al. Trends Biotech 23:573-583, 2005; Duncan and Hadlaczky Curr Opin Biotech 18:420-424, 2007): (1) the de novo formation by centromere seeding, the "bottom-up" approach, (2) the truncation of natural chromosomes or the modification of naturally occurring minichromosomes, the "top-down" approach, and (3) the in vivo "inductive" approach. Satellite DNA-based artificial chromosomes (SATACs) generated by the in vivo "inductive" method have the potential to become an efficient tool in diverse gene technology applications such as cellular protein manufacturing (Kennard et al. BioPharm Int 20:52-59, 2007; Kennard et al. Biotechnol Bioeng 104:526-539, 2009; Kennard et al. Biotechnol Bioeng 104:540-553, 2009), transgenic animal production (Telenius et al. Chromosome Res 7:3-7, 1999; Co et al. Chromosome Res 8:183-191, 2000; Monteith et al. Methods Mol Biol 240:227-242, 2003), and ultimately a safe vector for gene therapy (Vanderbyl et al. Stem Cells 22:324-333, 2004; Vanderbyl et al. Exp Hematol 33:1470-1476, 2005; Katona et al. Cell. Mol. Life Sci 65:3830-3838, 2008). A detailed protocol for the de novo generation of satellite DNA-based artificial chromosomes (SATACs) via induced large-scale amplification is presented.
Collapse
Affiliation(s)
- Erika Csonka
- Biological Research Center, Institute of Genetics, Hungarian Academy of Sciences, Szeged, Hungary.
| |
Collapse
|
10
|
Katona RL, Vanderbyl SL, Perez CF. Mammalian artificial chromosomes and clinical applications for genetic modification of stem cells: an overview. Methods Mol Biol 2011; 738:199-216. [PMID: 21431729 DOI: 10.1007/978-1-61779-099-7_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Modifying multipotent, self-renewing human stem cells with mammalian artificial chromosomes (MACs), present a promising clinical strategy for numerous diseases, especially ex vivo cell therapies that can benefit from constitutive or overexpression of therapeutic gene(s). MACs are nonintegrating, autonomously replicating, with the capacity to carry large cDNA or genomic sequences, which in turn enable potentially prolonged, safe, and regulated therapeutic transgene expression, and render MACs as attractive genetic vectors for "gene replacement" or for controlling differentiation pathways in progenitor cells. The status quo is that the most versatile target cell would be one that was pluripotent and self-renewing to address multiple disease target cell types, thus making multilineage stem cells, such as adult derived early progenitor cells and embryonic stem cells, as attractive universal host cells. We will describe the progress of MAC technologies, the subsequent modifications of stem cells, and discuss the establishment of MAC platform stem cell lines to facilitate proof-of-principle studies and preclinical development.
Collapse
Affiliation(s)
- Robert L Katona
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary.
| | | | | |
Collapse
|
11
|
Hayashi M, Katou Y, Itoh T, Tazumi M, Yamada Y, Takahashi T, Nakagawa T, Shirahige K, Masukata H. Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast. EMBO J 2007; 26:1327-39. [PMID: 17304213 PMCID: PMC1817633 DOI: 10.1038/sj.emboj.7601585] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 01/08/2007] [Indexed: 12/11/2022] Open
Abstract
DNA replication of eukaryotic chromosomes initiates at a number of discrete loci, called replication origins. Distribution and regulation of origins are important for complete duplication of the genome. Here, we determined locations of Orc1 and Mcm6, components of pre-replicative complex (pre-RC), on the whole genome of Schizosaccharomyces pombe using a high-resolution tiling array. Pre-RC sites were identified in 460 intergenic regions, where Orc1 and Mcm6 colocalized. By mapping of 5-bromo-2'-deoxyuridine (BrdU)-incorporated DNA in the presence of hydroxyurea (HU), 307 pre-RC sites were identified as early-firing origins. In contrast, 153 pre-RC sites without BrdU incorporation were considered to be late and/or inefficient origins. Inactivation of replication checkpoint by Cds1 deletion resulted in BrdU incorporation with HU specifically at the late origins. Early and late origins tend to distribute separately in large chromosome regions. Interestingly, pericentromeric heterochromatin and the silent mating-type locus replicated in the presence of HU, whereas the inner centromere or subtelomeric heterochromatin did not. Notably, MCM did not bind to inner centromeres where origin recognition complex was located. Thus, replication is differentially regulated in chromosome domains.
Collapse
Affiliation(s)
- Makoto Hayashi
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Yuki Katou
- Riken Genomic Science Center, Human Genome Research Group, Genome Informatics Team, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Takehiko Itoh
- Research Center for Advanced Science and Technology, Mitsubishi Research Institute Inc., Chiyoda-ku, Tokyo, Japan
| | - Mitsutoshi Tazumi
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Yoshiki Yamada
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Tatsuro Takahashi
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Takuro Nakagawa
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Katsuhiko Shirahige
- Riken Genomic Science Center, Human Genome Research Group, Genome Informatics Team, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Center for Biological Resources and Informatics, Division of Gene Research, and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Hisao Masukata
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- Department of Biology, Graduate School of Science, Osaka University, 1-1, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan. Tel.: +81 6 6850 5432; Fax: +81 6 6850 5440; E-mail:
| |
Collapse
|
12
|
Weidtkamp-Peters S, Rahn HP, Cardoso MC, Hemmerich P. Replication of centromeric heterochromatin in mouse fibroblasts takes place in early, middle, and late S phase. Histochem Cell Biol 2005; 125:91-102. [PMID: 16231189 DOI: 10.1007/s00418-005-0063-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2005] [Indexed: 10/25/2022]
Abstract
The replication of eukaryotic chromosomes takes place throughout S phase, but little is known how this process is organized in space and time. Early and late replicating chromosomal domains appear to localize to distinct spatial compartments of the nucleus where DNA synthesis can take place at defined times during S phase. In general, transcriptionally active chromatin replicates early in S phase whereas transcriptionally inactive chromatin replicates later. Here we provide evidence for significant deviation from this dogma in mouse NIH3T3 cells. While the bulk pericentromeric heterochromatin replicates exclusively during mid to late S phase, centromeric DNA domains associated with constitutive kinetochore proteins are replicated throughout all stages of S phase. On an average, 12+/-4% of centromeres replicate in early S phase. Early replication of a subset of centromeres was also detected in living C2C12 murine cells. Thus, in contrast to expectation, late replication is not an obligatory feature of centromeric heterochromatin in murine cells and it does not determine their 'heterochromatic state'.
Collapse
|
13
|
Bunnell BA, Izadpanah R, Ledebur HC, Perez CF. Development of mammalian artificial chromosomes for the treatment of genetic diseases: Sandhoff and Krabbe diseases. Expert Opin Biol Ther 2005; 5:195-206. [PMID: 15757381 DOI: 10.1517/14712598.5.2.195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian artificial chromosomes (MACs) are being developed as alternatives to viral vectors for gene therapy applications, as they allow for the introduction of large payloads of genetic information in a non-integrating, autonomously replicating format. One class of MACs, the satellite DNA-based artificial chromosome expression vehicle (ACE), is uniquely suited for gene therapy applications, in that it can be generated denovo in cells, along with being easily purified and readily transferred into a variety of recipient cell lines and primary cells. To facilitate the rapid engineering of ACEs, the ACE System was developed, permitting the efficient and reproducible loading of pre-existing ACEs with DNA sequences and/or target gene(s). As a result, the ACE System and ACEs are unique and versatile platforms for ex vivo gene therapy strategies that circumvent and alleviate existing safety and delivery limitations surrounding conventional gene therapy vectors. This review will focus on the status of MAC technologies and, in particular, the application of the ACE System towards an ex vivo gene therapy treatment of lysosomal storage diseases, specifically Sandhoff (MIM #268800) and Krabbe (MIM #245200) diseases.
Collapse
Affiliation(s)
- Bruce A Bunnell
- Tulane University Health Sciences Center, Center for Gene Therapy, Department of Pharmacology, Division of Gene Therapy, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA 70433, USA.
| | | | | | | |
Collapse
|
14
|
Lindenbaum M, Perkins E, Csonka E, Fleming E, Garcia L, Greene A, Gung L, Hadlaczky G, Lee E, Leung J, MacDonald N, Maxwell A, Mills K, Monteith D, Perez CF, Shellard J, Stewart S, Stodola T, Vandenborre D, Vanderbyl S, Ledebur HC. A mammalian artificial chromosome engineering system (ACE System) applicable to biopharmaceutical protein production, transgenesis and gene-based cell therapy. Nucleic Acids Res 2004; 32:e172. [PMID: 15585659 PMCID: PMC535698 DOI: 10.1093/nar/gnh169] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mammalian artificial chromosomes (MACs) provide a means to introduce large payloads of genetic information into the cell in an autonomously replicating, non-integrating format. Unique among MACs, the mammalian satellite DNA-based Artificial Chromosome Expression (ACE) can be reproducibly generated de novo in cell lines of different species and readily purified from the host cells' chromosomes. Purified mammalian ACEs can then be re-introduced into a variety of recipient cell lines where they have been stably maintained for extended periods in the absence of selective pressure. In order to extend the utility of ACEs, we have established the ACE System, a versatile and flexible platform for the reliable engineering of ACEs. The ACE System includes a Platform ACE, containing >50 recombination acceptor sites, that can carry single or multiple copies of genes of interest using specially designed targeting vectors (ATV) and a site-specific integrase (ACE Integrase). Using this approach, specific loading of one or two gene targets has been achieved in LMTK(-) and CHO cells. The use of the ACE System for biological engineering of eukaryotic cells, including mammalian cells, with applications in biopharmaceutical production, transgenesis and gene-based cell therapy is discussed.
Collapse
Affiliation(s)
- Michael Lindenbaum
- Chromos Molecular Systems, Inc., 8081 Lougheed Highway, Burnaby, BC, Canada V5A 1W9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Vanderbyl S, MacDonald GN, Sidhu S, Gung L, Telenius A, Perez C, Perkins E. Transfer and Stable Transgene Expression of a Mammalian Artificial Chromosome into Bone Marrow-Derived Human Mesenchymal Stem Cells. Stem Cells 2004; 22:324-33. [PMID: 15153609 DOI: 10.1634/stemcells.22-3-324] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mammalian artificial chromosomes (ACEs) transferred to autologous adult stem cells (SCs) provide a novel strategy for the ex vivo gene therapy of a variety of clinical indications. Unlike retroviral vectors, ACEs are stably maintained, autonomous, and nonintegrating. In this report we assessed the delivery efficiency of ACEs and evaluated the subsequent differentiation potential of ACE-transfected bone marrow-derived human mesenchymal stem cells (hMSCs). For this, an ACE carrying multiple copies of the red fluorescent protein (RFP) reporter gene was transferred under optimized conditions into hMSCs using standard cationic transfection reagents. RFP expression was detectable in 11% of the cells 4-5 days post-transfection. The RFP-expressing hMSCs were enriched by high-speed flow cytometry and maintained their potential to differentiate along adipogenic or osteogenic lineages. Fluorescent in situ hybridization and fluorescent microscopy demonstrated that the ACEs were stably maintained as single chromosomes and expressed the RFP transgenes in both differentiated cultures. These findings demonstrate the potential utility of ACEs for human adult SC ex vivo gene therapy.
Collapse
Affiliation(s)
- S Vanderbyl
- Chromos Molecular Systems Inc., Burnaby, British Columbia, Canada.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Euchromatin, which has an open structure and is frequently transcribed, tends to replicate in early S phase. Heterochromatin, which is more condensed and rarely transcribed, usually replicates in late S phase. Here, we report significant deviation from this correlation in the fission yeast, Schizosaccharomyces pombe. We found that heterochromatic centromeres and silent mating-type cassettes replicate in early S phase. Only heterochromatic telomeres replicate in late S phase. Research in other laboratories has shown that occasionally other organisms also replicate some of their heterochromatin in early S phase. Thus, late replication is not an obligatory feature of heterochromatin.
Collapse
Affiliation(s)
- Soo-Mi Kim
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | |
Collapse
|
17
|
Stewart S, MacDonald N, Perkins E, DeJong G, Perez C, Lindenbaum M. Retrofitting of a satellite repeat DNA-based murine artificial chromosome (ACes) to contain loxP recombination sites. Gene Ther 2002; 9:719-23. [PMID: 12032695 DOI: 10.1038/sj.gt.3301757] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A satellite DNA-based mammalian artificial chromosome (ACes) was generated and subsequently modified by targeting of a loxP-red fluorescent protein (RFP) expression cassette via homologous recombination into a ribosomal DNA (rDNA)-containing locus. Clones containing correctly targeted ACes were identified by PCR from populations of RFP-expressing cells enriched by FACS sorting and were further characterized by fluorescent in situ hybridization. The targeted ACes maintained its ability to be purified to near homogeneity. Studies are currently underway to further characterize the functionality, carrying capacity, stability and transfectability of this modified ACes.
Collapse
Affiliation(s)
- S Stewart
- Chromos Molecular Systems Inc., Burnaby, BC, Canada
| | | | | | | | | | | |
Collapse
|
18
|
de Jong G, Telenius A, Vanderbyl S, Meitz A, Drayer J. Efficient in-vitro transfer of a 60-Mb mammalian artificial chromosome into murine and hamster cells using cationic lipids and dendrimers. Chromosome Res 2002; 9:475-85. [PMID: 11592482 DOI: 10.1023/a:1011680529073] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Non-integrating artificial chromosomes represent a potentially promising approach to ex-vivo and in-vivo gene therapy applications. These large vectors require an efficient means for delivery to target cells. We have evaluated a panel of twenty-one commercially available transfection agents for their ability to mediate the in-vitro transfer of a 60-Mb murine artificial chromosome consisting of mouse major satellite DNA and a payload including a marker gene (hygromycin B) and a reporter gene (lacZ). A rapid screening procedure utilizing iododeoxyuridine-incorporated artificial chromosomes facilitated the assessment of different transfection conditions. The results were confirmed by cytogenetic analysis of positively transfected clones. By transfecting both hamster lung fibroblast cells (V79-4) and murine connective tissue cells [L-M(TK-)], the best results were obtained using either Superfect (cationic dendrimer) or LipofectAMINE 2000 (cationic lipid) with protocols adapted for metaphase chromosome preparation. Transfection efficiencies of 10(-4)-10(-2) (0.01-1%) were routinely observed, and recipient cells were able to maintain expression of the reporter gene over the total length of the experiment. This represents a significant advance over our previous attempts at mass-transfection of artificial chromosomes using microcell fusion, where we routinely achieved efficiencies at least two orders of magnitudes less than reported here. These data are particularly noteworthy given that lipid-mediated gene transfer typically involves transfecting millions of plasmids (1 microg of DNA from a 5 kb plasmid is approximately 1.2 x 10(11) copies) to each cell whereas the much larger artificial chromosomes comprise only a one-to-one ratio, yet achieve transfection efficiencies of (10(-2)-10(-1)), that is, comparable to our results. These data suggest that artificial chromosomes containing therapeutic genes can be successfully delivered to target cells in vitro using well-established transfection agents.
Collapse
Affiliation(s)
- G de Jong
- Chromos Molecular Systems Inc., Burnaby, BC.
| | | | | | | | | |
Collapse
|
19
|
Wang B, Lazaris A, Lindenbaum M, Stewart S, Co D, Perez C, Drayer J, Karatzas CN. Expression of a reporter gene after microinjection of mammalian artificial chromosomes into pronuclei of bovine zygotes. Mol Reprod Dev 2001; 60:433-8. [PMID: 11746953 DOI: 10.1002/mrd.1107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The introduction of mammalian artificial chromosomes (ACs) into zygotes represents an alternative, more predictive technology for the production of recombinant proteins in transgenic animals. The aim of these experiments was to examine the effects of artificial chromosome microinjection into bovine pronuclei on embryo development and reporter gene expression. Bovine oocytes aspirated from 2-5 mm size follicles were matured in vitro for 22 hr. Mature oocytes were fertilized in vitro with frozen- thawed bull spermatozoa. Artificial chromosome carrying either beta-galactosidase (Lac-Z) gene or green fluorescence protein (GFP) gene were isolated by flow cytometry. A single chromosome was microinjected into one of the two pronuclei of bovine zygotes. Sham injected zygotes served as controls. Injected zygotes were cultured in G 1.2 medium for 7 days. Hatched blastocysts were cultured on blocked STO cell feeder layer for attachment and outgrowth of ICM and trophectoderm cells. The results showed a high zygote survival rate following LacZ-ACs microinjection (74%). However, the blastocyst development rate after 7 days of culture was significantly lower than that of sham injected zygotes (7.5 vs. 22%). Embryonic cells positive for Lac-Z gene were detected by PCR in three of nine outgrowth colonies. In addition, GFP gene expression was observed in 15 out of 85 (18%) embryos at the arrested 2-cell stage to blastocyst stage. Six blastocysts successfully outgrew, three outgrowths were GFP positive for up to 3 weeks in culture. We conclude that the methodology for artificial chromosome delivery into bovine zygotes could lead to viable blastocyst development, and reporter gene expression could be sustained during pre-implantation development.
Collapse
Affiliation(s)
- B Wang
- Nexia Biotechnologies, Inc., 21,025 route transcanadienne, Ste-Anne de Bellevue, Quebec, Canada H9X 3R2.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Co DO, Borowski AH, Leung JD, van der Kaa J, Hengst S, Platenburg GJ, Pieper FR, Perez CF, Jirik FR, Drayer JI. Generation of transgenic mice and germline transmission of a mammalian artificial chromosome introduced into embryos by pronuclear microinjection. Chromosome Res 2000; 8:183-91. [PMID: 10841045 DOI: 10.1023/a:1009206926548] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have generated transgenic mice by pronuclear microinjection of a murine satellite DNA-based artificial chromosome (SATAC). As 50% of the founder progeny were SATAC-positive, this demonstrates that SATAC transmission through the germline had occurred. FISH analyses of metaphase chromosomes from mitogen-activated peripheral blood lymphocytes from both the founder and progeny revealed that the SATAC was maintained as a discrete chromosome and that it had not integrated into an endogenous chromosome. To our knowledge, this is the first report of the germline transmission of a genetically engineered mammalian artificial chromosome within transgenic animals generated through pronuclear microinjection. We have also shown that murine SATACs can be similarly introduced into bovine embryos. The use of embryo microinjection to generate transgenic mammals carrying genetically engineered chromosomes provides a novel method by which the unique advantages of chromosome-based gene delivery systems can be exploited.
Collapse
Affiliation(s)
- D O Co
- Chromos Molecular Systems, Inc., Burnaby, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yang X, Tian XC, Dai Y, Wang B. Transgenic farm animals: applications in agriculture and biomedicine. BIOTECHNOLOGY ANNUAL REVIEW 2000; 5:269-92. [PMID: 10875004 DOI: 10.1016/s1387-2656(00)05039-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
During the last decade, tremendous progress has been made in the area of transgenic farm animals. While there are many important transgenic farm animal applications in agriculture, funding has been very limited and progress has been rather slow in this area. Encouragingly, the potential applications of transgenic farm animals as bioreactors for producing human therapeutic proteins and as organ donors for transplantations in humans have attracted vast funding from the private sectors. Several transgenic animal products are already in various phases of clinical trials. Estimates are, that in the near future, the worlds demands on human pharmaceutical proteins may largely be met by transgenic farm animals. While there are still major challenges ahead in the area of xenotransplantation using transgenic animal organs, transgenic tissues or cells have demonstrated promising results as a potential tool for gene therapy. Recent development on cloning, embryonic stem cells and alternative transgenic methods may further expand the transgenic applications in both agriculture and biomedicine.
Collapse
Affiliation(s)
- X Yang
- Department of Animal Science, University of Connecticut, Storrs 06269-4040, USA.
| | | | | | | |
Collapse
|
22
|
Perez C, de Jong G, Drayer J. Satellite DNA-based artificial chromosomes--chromosomal vectors. Trends Biotechnol 2000; 18:402-3. [PMID: 11183125 DOI: 10.1016/s0167-7799(00)01487-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Csonka E, Cserpán I, Fodor K, Holló G, Katona R, Keresö J, Praznovszky T, Szakál B, Telenius A, deJong G, Udvardy A, Hadlaczky G. Novel generation of human satellite DNA-based artificial chromosomes in mammalian cells. J Cell Sci 2000; 113 ( Pt 18):3207-16. [PMID: 10954419 DOI: 10.1242/jcs.113.18.3207] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An in vivo approach has been developed for generation of artificial chromosomes, based on the induction of intrinsic, large-scale amplification mechanisms of mammalian cells. Here, we describe the successful generation of prototype human satellite DNA-based artificial chromosomes via amplification-dependent de novo chromosome formations induced by integration of exogenous DNA sequences into the centromeric/rDNA regions of human acrocentric chromosomes. Subclones with mitotically stable de novo chromosomes were established, which allowed the initial characterization and purification of these artificial chromosomes. Because of the low complexity of their DNA content, they may serve as a useful tool to study the structure and function of higher eukaryotic chromosomes. Human satellite DNA-based artificial chromosomes containing amplified satellite DNA, rDNA, and exogenous DNA sequences were heterochromatic, however, they provided a suitable chromosomal environment for the expression of the integrated exogenous genetic material. We demonstrate that induced de novo chromosome formation is a reproducible and effective methodology in generating artificial chromosomes from predictable sequences of different mammalian species. Satellite DNA-based artificial chromosomes formed by induced large-scale amplifications on the short arm of human acrocentric chromosomes may become safe or low risk vectors in gene therapy.
Collapse
Affiliation(s)
- E Csonka
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, H-6701 Szeged, PO Box 521, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nielsen TO, Cossons NH, Zannis-Hadjopoulos M, Price GB. Circular YAC vectors containing short mammalian origin sequences are maintained under selection as HeLa episomes. J Cell Biochem 2000; 76:674-85. [PMID: 10653986 DOI: 10.1002/(sici)1097-4644(20000315)76:4<674::aid-jcb15>3.0.co;2-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
pYACneo, a 15.8-kb plasmid, contains a bacterial origin, G418-resistance gene, and yeast ARS, CEN, and TEL elements. Three mammalian origins have been cloned into this circular vector: 343, a 448-bp chromosomal origin from a transcribed region of human chromosome 6q; X24, a 4.3-kb element containing the hamster DHFR origin of bidirectional replication (oribeta), and S3, a 1.1-kb human anti-cruciform purified autonomously replicating sequence. The resulting constructs have been transfected into HeLa cells, and G418-resistant subcultures were isolated. The frequency of G418-resistant transformation was 1.7-8.7 times higher with origin-containing YACneo than with vector alone. After >45 generations under G418 selection, the presence of episomal versus integrated constructs was assessed by fluctuation assay and by PCR of supercoiled, circular, and linear genomic cellular DNAs separated on ethidium bromide-cesium chloride gradients. In stable G418-resistant subcultures transfected with vector alone or with linearized constructs, as well as in some subcultures transfected with circular origin-containing constructs, resistance was conferred by integration into the host genome. However, several examples were found of G418-resistant transfectants maintaining the Y.343 and the YAC.S3 circular constructs in a strictly episomal state after long-term culture in selective medium, with 80-90% stability per cell division. The episomes were found to replicate semiconservatively in a bromodeoxyuridine pulse-labeling assay for </=130 cell generations after transfection. Furthermore, after </=172 cell generations rescued episomal DNA could be isolated intact and unrearranged, and could be used to retransform bacteria. These versatile constructs, containing mammalian origins, have the capacity for further modification with human telomere or large putative centromere elements, in an effort to move towards construction of a human artificial chromosome.
Collapse
Affiliation(s)
- T O Nielsen
- Department of Pathology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | |
Collapse
|
25
|
Telenius H, Szeles A, Keresö J, Csonka E, Praznovszky T, Imreh S, Maxwell A, Perez CF, Drayer JI, Hadlaczky G. Stability of a functional murine satellite DNA-based artificial chromosome across mammalian species. Chromosome Res 1999; 7:3-7. [PMID: 10219727 DOI: 10.1023/a:1009215026001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A 60-Mb murine chromosome consisting of murine pericentric satellite DNA and two bands of integrated marker and reporter genes has been generated de novo in a rodent/human hybrid cell line (mM2C1). This prototype mammalian artificial chromosome platform carries a normal centromere, and the expression of its beta-galactosidase reporter gene has remained stable under selection for over 25 months. The novel chromosome was transferred by a modified microcell fusion method to mouse [L-M(TK-)], bovine (P46) and human (EJ30) cell lines. In all cases, the chromosome remained structurally and functionally intact under selection for periods exceeding 3 months from the time of transfer into the new host. In addition, the chromosome was retained in three first-generation tumours when L-M(TK-) cells containing the chromosome were xenografted in severe combined immunodeficiency mice. These data support that a murine satellite DNA-based artificial chromosome can be used as a functional mammalian artificial chromosome and can be maintained in vivo and in cells of heterologous species in vitro.
Collapse
Affiliation(s)
- H Telenius
- Chromos Molecular Systems Inc., Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
deJong G, Telenius AH, Telenius H, Perez CF, Drayer JI, Hadlaczky G. Mammalian artificial chromosome pilot production facility: Large-scale isolation of functional satellite DNA-based artificial chromosomes. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-0320(19990201)35:2<129::aid-cyto4>3.0.co;2-a] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|