1
|
Pantier R, Brown M, Han S, Paton K, Meek S, Montavon T, Shukeir N, McHugh T, Kelly DA, Hochepied T, Libert C, Jenuwein T, Burdon T, Bird A. MeCP2 binds to methylated DNA independently of phase separation and heterochromatin organisation. Nat Commun 2024; 15:3880. [PMID: 38719804 PMCID: PMC11079052 DOI: 10.1038/s41467-024-47395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/29/2024] [Indexed: 05/12/2024] Open
Abstract
Correlative evidence has suggested that the methyl-CpG-binding protein MeCP2 contributes to the formation of heterochromatin condensates via liquid-liquid phase separation. This interpretation has been reinforced by the observation that heterochromatin, DNA methylation and MeCP2 co-localise within prominent foci in mouse cells. The findings presented here revise this view. MeCP2 localisation is independent of heterochromatin as MeCP2 foci persist even when heterochromatin organisation is disrupted. Additionally, MeCP2 foci fail to show hallmarks of phase separation in live cells. Importantly, we find that mouse cellular models are highly atypical as MeCP2 distribution is diffuse in most mammalian species, including humans. Notably, MeCP2 foci are absent in Mus spretus which is a mouse subspecies lacking methylated satellite DNA repeats. We conclude that MeCP2 has no intrinsic tendency to form condensates and its localisation is independent of heterochromatin. Instead, the distribution of MeCP2 in the nucleus is primarily determined by global DNA methylation patterns.
Collapse
Affiliation(s)
- Raphaël Pantier
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - Megan Brown
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - Sicheng Han
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - Katie Paton
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - Stephen Meek
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Thomas Montavon
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | - Nicholas Shukeir
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | - Toni McHugh
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - David A Kelly
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - Tino Hochepied
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Thomas Jenuwein
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | - Tom Burdon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Adrian Bird
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
2
|
|
3
|
Cheng YM, Li TS, Hsieh LJ, Hsu PC, Li YC, Lin CC. Complex genomic organization of Indian muntjac centromeric DNA. Chromosome Res 2009; 17:1051-62. [PMID: 19921447 DOI: 10.1007/s10577-009-9097-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/27/2009] [Accepted: 10/28/2009] [Indexed: 11/29/2022]
Abstract
A 69-kb Indian muntjac bacterial artificial chromosome (BAC) clone that screened positive for Cervid satellites I and IV was selected for complete sequence analysis and further characterization. The sequences of this BAC clone were found in the centromeres and in some interstitial sites of Indian muntjac chromosomes. Sequence analyses showed that the BAC clone contained a 14.5 kb Cervid satellite I-like DNA element and a 9 kb Cervid satellite IV-like DNA element. In addition, it contained 51 regions each organized in a complex fashion, with sequences homology to intersperse repetitive sequences such as LINEs, SINEs, LTRs, other published DNA elements, and unassigned sequences. The FISH patterns of seven non-satellite sequence elements generated from the BAC clone showed mainly specific to centromeres of the Indian muntjac representing novel centromeric DNAs of the species. Furthermore, FISH signals and Southern blot patterns of these elements suggest the existence of a not yet identified repetitive sequence with giant repeated monomers. Positive FISH signals of these elements were also detected in the centromeric regions of Formosan muntjac. This suggests that these newly identified non-Cervid satellite DNA sequences have been conserved in the centromere of the Formosan muntjac.
Collapse
Affiliation(s)
- Ya-Ming Cheng
- Department of Agronomy, National Chung Hsing University, Taichung, 402, Taiwan
| | | | | | | | | | | |
Collapse
|
4
|
Tsipouri V, Schueler MG, Hu S, Dutra A, Pak E, Riethman H, Green ED. Comparative sequence analyses reveal sites of ancestral chromosomal fusions in the Indian muntjac genome. Genome Biol 2008; 9:R155. [PMID: 18957082 PMCID: PMC2760882 DOI: 10.1186/gb-2008-9-10-r155] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/15/2008] [Accepted: 10/28/2008] [Indexed: 01/22/2023] Open
Abstract
Comparative mapping and sequencing was used to characterize the sites of ancestral chromosomal fusions in the Indian muntjac genome. Background Indian muntjac (Muntiacus muntjak vaginalis) has an extreme mammalian karyotype, with only six and seven chromosomes in the female and male, respectively. Chinese muntjac (Muntiacus reevesi) has a more typical mammalian karyotype, with 46 chromosomes in both sexes. Despite this disparity, the two muntjac species are morphologically similar and can even interbreed to produce viable (albeit sterile) offspring. Previous studies have suggested that a series of telocentric chromosome fusion events involving telomeric and/or satellite repeats led to the extant Indian muntjac karyotype. Results We used a comparative mapping and sequencing approach to characterize the sites of ancestral chromosomal fusions in the Indian muntjac genome. Specifically, we screened an Indian muntjac bacterial artificial-chromosome library with a telomere repeat-specific probe. Isolated clones found by fluorescence in situ hybridization to map to interstitial regions on Indian muntjac chromosomes were further characterized, with a subset then subjected to shotgun sequencing. Subsequently, we isolated and sequenced overlapping clones extending from the ends of some of these initial clones; we also generated orthologous sequence from isolated Chinese muntjac clones. The generated Indian muntjac sequence has been analyzed for the juxtaposition of telomeric and satellite repeats and for synteny relationships relative to other mammalian genomes, including the Chinese muntjac. Conclusions The generated sequence data and comparative analyses provide a detailed genomic context for seven ancestral chromosome fusion sites in the Indian muntjac genome, which further supports the telocentric fusion model for the events leading to the unusual karyotypic differences among muntjac species.
Collapse
Affiliation(s)
- Vicky Tsipouri
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Huang L, Wang J, Nie W, Su W, Yang F. Tandem chromosome fusions in karyotypic evolution of Muntiacus: evidence from M. feae and M. gongshanensis. Chromosome Res 2006; 14:637-47. [PMID: 16964570 DOI: 10.1007/s10577-006-1073-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 04/17/2006] [Accepted: 04/17/2006] [Indexed: 11/26/2022]
Abstract
The muntjacs (Muntiacus, Cervidae) are famous for their rapid and radical karyotypic diversification via repeated tandem chromosome fusions, constituting a paradigm for the studies of karyotypic evolution. Of the five muntjac species with defined karyotypes, three species (i.e. Muntiacus reevesi, 2n = 46; M. m. vaginalis, 2n = 6/7; and M. crinifrons, 2n = 8/9) have so far been investigated by a combined approach of comparative chromosome banding, chromosome painting and BAC mapping. The results demonstrated that extensive centromere-telomere fusions and a few centric fusions are the chromosomal mechanisms underlying the karyotypic evolution of muntjacs. Here we have applied the same approach to two additional muntjac species with less well-characterized karyotypes, M. feae (2n = 14 male ) and M. gongshanensis (2n = 8 female). High-resolution G-banded karyotypes for M. feae and M. gongshanensis are provided. The integrated analysis of hybridization results led to the establishment of a high-resolution comparative map between M. reevesi, M. feae, and M. gongshanensis, proving that all tandem fusions underpinning the karyotypic evolution of these two muntjac species are also centromere-telomere fusions. Furthermore, the results have improved our understanding of the karyotypic relationships of extant muntjac species and provided compelling cytogenetic evidence that supports the view that M. crinifrons, M. feae, and M. gongshanensis should each be treated as a distinct species.
Collapse
Affiliation(s)
- L Huang
- Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, and the Graduate School of the Chinese Academy of Sciences, Jiaochang Dong Lu 32#, Kunming, Yunnan 650223, PR China
| | | | | | | | | |
Collapse
|
6
|
Lin CC, Li YC. Chromosomal distribution and organization of three cervid satellite DNAs in Chinese water deer (Hydropotes inermis). Cytogenet Genome Res 2006; 114:147-54. [PMID: 16825767 DOI: 10.1159/000093331] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 01/24/2006] [Indexed: 11/19/2022] Open
Abstract
The species-specific profile and centromeric heterochromatin localization of satellite DNA in mammalian genomes imply that satellite DNA may play an important role in mammalian karyotype evolution and speciation. A satellite III DNA family, CCsatIII was thought to be specific to roe deer (Capreolus capreolus). In this study, however, this satellite DNA family was found also to exist in Chinese water deer (Hydropotes inermis) by PCR-Southern screening. A satellite III DNA element of this species was then generated from PCR-cloning by amplifying this satellite element using primer sequences from the roe deer satellite III clone (CCsatIII). The newly generated satellite III DNA along with previously obtained satellite I and II DNA clones were used as probes for FISH studies to investigate the genomic distribution and organization of these three satellite DNA families in centromeric heterochromatin regions of Chinese water deer chromosomes. Satellite I and II DNA were observed in the pericentric/centric regions of all chromosomes, whereas satellite III was distributed on 38 out of 70 chromosomes. The distribution and orientation of satellite DNAs I, II and III in the centromeric heterochromatin regions of the genome were further classified into four different types. The existence of a Capreolus-like satellite III in Chinese water deer implies that satellite III is not specific to the genus Capreolus (Buntjer et al., 1998) and supports the molecular phylogeny classification of Randi et al. (1998) which suggests that Chinese water deer and roe deer are closely related.
Collapse
Affiliation(s)
- C C Lin
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | | |
Collapse
|
7
|
Li YC, Cheng YM, Hsieh LJ, Ryder OA, Yang F, Liao SJ, Hsiao KM, Tsai FJ, Tsai CH, Lin CC. Karyotypic evolution of a novel cervid satellite DNA family isolated by microdissection from the Indian muntjac Y-chromosome. Chromosoma 2005; 114:28-38. [PMID: 15827746 DOI: 10.1007/s00412-005-0335-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 02/22/2005] [Accepted: 02/22/2005] [Indexed: 10/25/2022]
Abstract
A minilibrary was constructed from DOP-PCR products using microdissected Y-chromosomes of Indian muntjac as DNA templates. Two microclones designated as IM-Y4-52 and IM-Y5-7 were obtained from negative screening of all three cervid satellite DNAs (satellites I, II, and IV). These two microclones were 295 and 382 bp in size, respectively, and shared approximately 70% sequence homology. Southern blot analysis showed that the IM-Y4-52 clone was repetitive in nature with an approximately 0.32-kb register in HaeIII digest. Sequence comparison revealed no similarities to DNA sequences deposited in the GenBank database, suggesting that the microclone sequences were from a novel satellite DNA family designated as cervid satellite V. A subclone of an Indian muntjac BAC clone which screened positive for IM-Y4-52 had a 3,325-bp insert containing six intact monomers, four deleted monomers, and two partial monomers. The consensus sequence of the monomer was 328 bp in length and shared more than 80% sequence homology with every intact monomer. A zoo blot study using IM-Y4-52 as a probe showed that the strong hybridization with EcoRI digested male genomic DNA of Indian muntjac, Formosan muntjac, Chinese muntjac, sambar deer, and Chinese water deer. Female genomic DNA of Indian muntjac, Chinese water deer, and Formosan muntjac also showed positive hybridization patterns. Satellite V was found to specifically localize to the Y heterochromatin region of the muntjacs, sambar deer, and Chinese water deer and to chromosome 3 of Indian muntjac and the X-chromosome of Chinese water deer.
Collapse
Affiliation(s)
- Y-C Li
- Department of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec. 1, Chien Kuo N. Rd., 40203 Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Marchal JA, Martínez S, Acosta MJ, Bullejos M, Díaz de la Guardia R, Sánchez A. Characterization of an EcoRI family of satellite DNA from two species of the genus Eptesicus (Vespertilionidae; Chiroptera). Genetica 2004; 122:303-10. [PMID: 15609553 DOI: 10.1007/s10709-004-2220-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have cloned and sequenced a 321 bp band of repetitive DNA from Eptesicus fuscus and E. serotinus observed after gel electrophoresis of EcoRI digested genomic DNA in both species. Southern blot analysis of genomic DNA (from both species) digested with the same enzyme showed the existence of a ladder pattern indicating that the repetitive DNA is arrayed in tandem. The repetitive sequences have a monomer unit of 321 bp which is composed of two subunits of 160 bp, suggested by the existence of a 160 bp band in the ladder of E. fuscus and by the presence of some direct repeats found in the analysis of the consensus sequence. Analysis of the methylation status demonstrated that cytosines in CCGG sequences in this satellite DNA are methylated in E. fuscus but not in the E. serotinus. Alignment of the sequenced clones showed that several nucleotide positions are diagnostic species-specific and consequently the phylogenetic analysis grouped the monomer units from both species in two clearly separated groups.
Collapse
Affiliation(s)
- J A Marchal
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales y de la Salud, Universidad de Jaén, E-23071 Jaén, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Barragán MJL, Martínez S, Marchal JA, Fernández R, Bullejos M, Díaz de la Guardia R, Sánchez A. Pericentric satellite DNA sequences in Pipistrellus pipistrellus (Vespertilionidae; Chiroptera). Heredity (Edinb) 2003; 91:232-8. [PMID: 12939623 DOI: 10.1038/sj.hdy.6800303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This paper reports the molecular and cytogenetic characterization of a HindIII family of satellite DNA in the bat species Pipistrellus pipistrellus. This satellite is organized in tandem repeats of 418 bp monomer units, and represents approximately 3% of the whole genome. The consensus sequence from five cloned monomer units has an A-T content of 62.20%. We have found differences in the ladder pattern of bands between two populations of the same species. These differences are probably because of the absence of the target sites for the HindIII enzyme in most monomer units of one population, but not in the other. Fluorescent in situ hybridization (FISH) localized the satellite DNA in the pericentromeric regions of all autosomes and the X chromosome, but it was absent from the Y chromosome. Digestion of genomic DNAs with HpaII and its isoschizomer MspI demonstrated that these repetitive DNA sequences are not methylated. Other bat species were tested for the presence of this repetitive DNA. It was absent in five Vespertilionidae and one Rhinolophidae species, indicating that it could be a species/genus specific, repetitive DNA family.
Collapse
Affiliation(s)
- M J L Barragán
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales y de la Salud, Universidad de Jaén, E-23071 Jaén, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Li YC, Lee C, Sanoudou D, Hseu TH, Li SY, Lin CC, Hsu TH. Interstitial colocalization of two cervid satellite DNAs involved in the genesis of the Indian muntjac karyotype. Chromosome Res 2001; 8:363-73. [PMID: 10997777 DOI: 10.1023/a:1009203518144] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A number of repetitive DNA clones were generated from PCR amplifications of Indian muntjac genomic DNA using primer sequences derived from a white tailed deer satellite II DNA sequence. One clone (Mmv-0.7) was characterized and shown to be a cervid satellite II DNA clone. Multiple colored FISH studies with cervid satellite I (C5) and this satellite II clone (Mmv-0.7) to Chinese muntjac metaphase chromosomes localized both satellite DNAs at the pericentromeric regions of all chromosomes except for chromosome 3 and the Y chromosome, whereas chromosome 3 exhibited pericentromeric satellite II DNA only. Where distinguishable, the pericentromeric satellite II signals appeared terminally oriented with respect to satellite I. Six pairs of Chinese muntjac autosomes had interstitial satellite I sites with four of these autosomal pairs (chromosomes 1, 2 and two other smaller autosomal pairs) also exhibiting interstitial satellite II signals. An interstitial site on the X chromosome was found to have satellite II signals. For the Indian muntjac chromosomes, FISH studies revealed a pericentromeric hybridization for satellites I and II as well as 27 distinct interstitial hybridization sites, each having at least one of the satellite DNAs. These data were used to more precisely define the chromosome fusion-associated breakpoints that presumably led to the formation of the present-day Indian muntjac karyotype. It further hints at the possibility that the Indian muntjac karyotype may have evolved directly from a 2n = 70 ancestral karyotype rather than from an intermediate 2n = 46 Chinese muntjac-like karyotype.
Collapse
Affiliation(s)
- Y C Li
- Department of Life Sciences, Chung Shan Medical and Dental College, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|