1
|
Okada A, Sera S, Taguchi M, Yamada H, Nagai N. Current status and usefulness of therapeutic drug monitoring implementation of theophylline in elderly patients based on a nationwide database study and modeling approach. Sci Prog 2024; 107:368504241285122. [PMID: 39311625 PMCID: PMC11425750 DOI: 10.1177/00368504241285122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
OBJECTIVES Theophylline is used in the treatment of chronic obstructive pulmonary disease but readily causes symptoms of intoxication and exhibits high risks in elderly patients. However, there have only been a few recent reports on the significance of therapeutic drug monitoring (TDM) implementation, especially in elderly patients. To examine the usefulness of theophylline TDM, we evaluated the current status of prescriptions containing theophylline and its side effects and assessed the influence of aging, sex, drug formulation, and concurrent drugs use on theophylline exposure using data from various nationwide databases and a pharmacokinetic modeling approach. METHODS We utilized sampling data from the National Database of Health Insurance Claims and Specific Health Checkups of Japan. Using the data of patients aged ≥80 years, we conducted an association analysis of theophylline and concurrent drugs. The transition in plasma theophylline concentration levels of elderly patients was estimated based on a previously reported physiological-based pharmacokinetic model. RESULTS Altogether, 3973 patients using theophylline were registered in our dataset, and about 50% were over 70 years old and used theophylline. Therapeutic drug monitoring implementation was confirmed in only 1.13% of patients. The association analysis confirmed a frequent co-occurrence with allopurinol and famotidine, which increase theophylline exposure, in elderly patients aged ≥80 years. The physiologically based pharmacokinetic model indicated that theophylline trough concentrations were 1.65-fold higher in elderly patients aged 80 years compared to those aged 30 years and 1.35-fold higher in females compared to males. CONCLUSION This study effectively combined information on the nationwide health care database and modeling approach, indicating the importance of proactive TDM and dose justification for female and elderly patients.
Collapse
Affiliation(s)
- Akira Okada
- Laboratory of Regulatory Science, Faculty of Pharmacy, Musashino University, Tokyo, Japan
- Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - Shoji Sera
- Laboratory of Regulatory Science, Faculty of Pharmacy, Musashino University, Tokyo, Japan
- Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - Maho Taguchi
- Department of Regulatory Science, Faculty of Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan
| | - Hiroaki Yamada
- Department of Regulatory Science, Faculty of Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan
| | - Naomi Nagai
- Laboratory of Regulatory Science, Faculty of Pharmacy, Musashino University, Tokyo, Japan
- Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| |
Collapse
|
3
|
Patel A, Wilson R, Harrell AW, Taskar KS, Taylor M, Tracey H, Riddell K, Georgiou A, Cahn AP, Marotti M, Hessel EM. Drug Interactions for Low-Dose Inhaled Nemiralisib: A Case Study Integrating Modeling, In Vitro, and Clinical Investigations. Drug Metab Dispos 2020; 48:307-316. [PMID: 32009006 DOI: 10.1124/dmd.119.089003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/27/2020] [Indexed: 11/22/2022] Open
Abstract
In vitro data for low-dose inhaled phosphoinositide 3-kinase delta inhibitor nemiralisib revealed that it was a substrate and a potent metabolism-dependent inhibitor of cytochrome P450 (P450) 3A4 and a P-glycoprotein (P-gp) substrate. An integrated in silico, in vitro, and clinical approach including a clinical drug interaction study as well as a bespoke physiologically based pharmacokinetic (PBPK) model was used to assess the drug-drug interaction (DDI) risk. Inhaled nemiralisib (100 µg, single dose) was coadministered with itraconazole, a potent P4503A4/P-gp inhibitor, following 200 mg daily administrations for 10 days in 20 male healthy subjects. Systemic exposure to nemiralisib (AUC0-inf) increased by 2.01-fold versus nemiralisib alone. To extrapolate the clinical data to other P4503A4 inhibitors, an inhaled PBPK model was developed using Simcyp software. Retrospective simulation of the victim risk showed good agreement between simulated and observed data (AUC0-inf ratio 2.3 vs. 2.01, respectively). Prospective DDI simulations predicted a weak but manageable drug interaction when nemiralisib was coadministered with other P4503A4 inhibitors, such as the macrolides clarithromycin and erythromycin (simulated AUC0-inf ratio of 1.7), both common comedications in the intended patient populations. PBPK and static mechanistic models were also used to predict a negligible perpetrator DDI effect for nemiralisib on other P4503A4 substrates, including midazolam (a sensitive probe substrate of P4503A4) and theophylline (a narrow therapeutic index drug and another common comedication). In summary, an integrated in silico, in vitro, and clinical approach including an inhalation PBPK model has successfully discharged any potential patient DDI risks in future nemiralisib clinical trials. SIGNIFICANCE STATEMENT: This paper describes the integration of in silico, in vitro, and clinical data to successfully discharge potential drug-drug interaction risks for a low-dose inhaled drug. This work featured assessment of victim and perpetrator risks of drug transporters and cytochrome P450 enzymes, utilizing empirical and mechanistic approaches combined with clinical data (drug interaction and human absorption, metabolism, and pharmacokinetics) and physiologically based pharmacokinetic modeling approaches to facilitate bespoke risk assessment in target patient populations.
Collapse
Affiliation(s)
- Aarti Patel
- Drug Metabolism and Pharmacokinetics (A.P., A.W.H., K.S.T., M.T., H.T.) and Bioanalysis, Immunogenicity and Biomarkers (A.G.), GlaxoSmithKline R&D, Ware, United Kingdom; RD Projects Clinical Platforms & Sciences, GlaxoSmithKline R&D, Stevenage, United Kingdom (R.W.); Global Clinical and Data Operations, GlaxoSmithKline R&D, Ermington, Australia (K.R.); Discovery Medicine, GlaxoSmithKline, Stevenage, United Kingdom (A.P.C.); Safety and Medical Governance, GlaxoSmithKline R&D, Stockley Park, Uxbridge, United Kingdom (M.M.); and Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom (E.M.H.)
| | - Robert Wilson
- Drug Metabolism and Pharmacokinetics (A.P., A.W.H., K.S.T., M.T., H.T.) and Bioanalysis, Immunogenicity and Biomarkers (A.G.), GlaxoSmithKline R&D, Ware, United Kingdom; RD Projects Clinical Platforms & Sciences, GlaxoSmithKline R&D, Stevenage, United Kingdom (R.W.); Global Clinical and Data Operations, GlaxoSmithKline R&D, Ermington, Australia (K.R.); Discovery Medicine, GlaxoSmithKline, Stevenage, United Kingdom (A.P.C.); Safety and Medical Governance, GlaxoSmithKline R&D, Stockley Park, Uxbridge, United Kingdom (M.M.); and Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom (E.M.H.)
| | - Andrew W Harrell
- Drug Metabolism and Pharmacokinetics (A.P., A.W.H., K.S.T., M.T., H.T.) and Bioanalysis, Immunogenicity and Biomarkers (A.G.), GlaxoSmithKline R&D, Ware, United Kingdom; RD Projects Clinical Platforms & Sciences, GlaxoSmithKline R&D, Stevenage, United Kingdom (R.W.); Global Clinical and Data Operations, GlaxoSmithKline R&D, Ermington, Australia (K.R.); Discovery Medicine, GlaxoSmithKline, Stevenage, United Kingdom (A.P.C.); Safety and Medical Governance, GlaxoSmithKline R&D, Stockley Park, Uxbridge, United Kingdom (M.M.); and Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom (E.M.H.)
| | - Kunal S Taskar
- Drug Metabolism and Pharmacokinetics (A.P., A.W.H., K.S.T., M.T., H.T.) and Bioanalysis, Immunogenicity and Biomarkers (A.G.), GlaxoSmithKline R&D, Ware, United Kingdom; RD Projects Clinical Platforms & Sciences, GlaxoSmithKline R&D, Stevenage, United Kingdom (R.W.); Global Clinical and Data Operations, GlaxoSmithKline R&D, Ermington, Australia (K.R.); Discovery Medicine, GlaxoSmithKline, Stevenage, United Kingdom (A.P.C.); Safety and Medical Governance, GlaxoSmithKline R&D, Stockley Park, Uxbridge, United Kingdom (M.M.); and Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom (E.M.H.)
| | - Maxine Taylor
- Drug Metabolism and Pharmacokinetics (A.P., A.W.H., K.S.T., M.T., H.T.) and Bioanalysis, Immunogenicity and Biomarkers (A.G.), GlaxoSmithKline R&D, Ware, United Kingdom; RD Projects Clinical Platforms & Sciences, GlaxoSmithKline R&D, Stevenage, United Kingdom (R.W.); Global Clinical and Data Operations, GlaxoSmithKline R&D, Ermington, Australia (K.R.); Discovery Medicine, GlaxoSmithKline, Stevenage, United Kingdom (A.P.C.); Safety and Medical Governance, GlaxoSmithKline R&D, Stockley Park, Uxbridge, United Kingdom (M.M.); and Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom (E.M.H.)
| | - Helen Tracey
- Drug Metabolism and Pharmacokinetics (A.P., A.W.H., K.S.T., M.T., H.T.) and Bioanalysis, Immunogenicity and Biomarkers (A.G.), GlaxoSmithKline R&D, Ware, United Kingdom; RD Projects Clinical Platforms & Sciences, GlaxoSmithKline R&D, Stevenage, United Kingdom (R.W.); Global Clinical and Data Operations, GlaxoSmithKline R&D, Ermington, Australia (K.R.); Discovery Medicine, GlaxoSmithKline, Stevenage, United Kingdom (A.P.C.); Safety and Medical Governance, GlaxoSmithKline R&D, Stockley Park, Uxbridge, United Kingdom (M.M.); and Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom (E.M.H.)
| | - Kylie Riddell
- Drug Metabolism and Pharmacokinetics (A.P., A.W.H., K.S.T., M.T., H.T.) and Bioanalysis, Immunogenicity and Biomarkers (A.G.), GlaxoSmithKline R&D, Ware, United Kingdom; RD Projects Clinical Platforms & Sciences, GlaxoSmithKline R&D, Stevenage, United Kingdom (R.W.); Global Clinical and Data Operations, GlaxoSmithKline R&D, Ermington, Australia (K.R.); Discovery Medicine, GlaxoSmithKline, Stevenage, United Kingdom (A.P.C.); Safety and Medical Governance, GlaxoSmithKline R&D, Stockley Park, Uxbridge, United Kingdom (M.M.); and Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom (E.M.H.)
| | - Alex Georgiou
- Drug Metabolism and Pharmacokinetics (A.P., A.W.H., K.S.T., M.T., H.T.) and Bioanalysis, Immunogenicity and Biomarkers (A.G.), GlaxoSmithKline R&D, Ware, United Kingdom; RD Projects Clinical Platforms & Sciences, GlaxoSmithKline R&D, Stevenage, United Kingdom (R.W.); Global Clinical and Data Operations, GlaxoSmithKline R&D, Ermington, Australia (K.R.); Discovery Medicine, GlaxoSmithKline, Stevenage, United Kingdom (A.P.C.); Safety and Medical Governance, GlaxoSmithKline R&D, Stockley Park, Uxbridge, United Kingdom (M.M.); and Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom (E.M.H.)
| | - Anthony P Cahn
- Drug Metabolism and Pharmacokinetics (A.P., A.W.H., K.S.T., M.T., H.T.) and Bioanalysis, Immunogenicity and Biomarkers (A.G.), GlaxoSmithKline R&D, Ware, United Kingdom; RD Projects Clinical Platforms & Sciences, GlaxoSmithKline R&D, Stevenage, United Kingdom (R.W.); Global Clinical and Data Operations, GlaxoSmithKline R&D, Ermington, Australia (K.R.); Discovery Medicine, GlaxoSmithKline, Stevenage, United Kingdom (A.P.C.); Safety and Medical Governance, GlaxoSmithKline R&D, Stockley Park, Uxbridge, United Kingdom (M.M.); and Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom (E.M.H.)
| | - Miriam Marotti
- Drug Metabolism and Pharmacokinetics (A.P., A.W.H., K.S.T., M.T., H.T.) and Bioanalysis, Immunogenicity and Biomarkers (A.G.), GlaxoSmithKline R&D, Ware, United Kingdom; RD Projects Clinical Platforms & Sciences, GlaxoSmithKline R&D, Stevenage, United Kingdom (R.W.); Global Clinical and Data Operations, GlaxoSmithKline R&D, Ermington, Australia (K.R.); Discovery Medicine, GlaxoSmithKline, Stevenage, United Kingdom (A.P.C.); Safety and Medical Governance, GlaxoSmithKline R&D, Stockley Park, Uxbridge, United Kingdom (M.M.); and Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom (E.M.H.)
| | - Edith M Hessel
- Drug Metabolism and Pharmacokinetics (A.P., A.W.H., K.S.T., M.T., H.T.) and Bioanalysis, Immunogenicity and Biomarkers (A.G.), GlaxoSmithKline R&D, Ware, United Kingdom; RD Projects Clinical Platforms & Sciences, GlaxoSmithKline R&D, Stevenage, United Kingdom (R.W.); Global Clinical and Data Operations, GlaxoSmithKline R&D, Ermington, Australia (K.R.); Discovery Medicine, GlaxoSmithKline, Stevenage, United Kingdom (A.P.C.); Safety and Medical Governance, GlaxoSmithKline R&D, Stockley Park, Uxbridge, United Kingdom (M.M.); and Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom (E.M.H.)
| |
Collapse
|