1
|
Okada S, Kuroki K, Ruiz CA, Tosi AJ, Imamura M. Molecular histology of spermatogenesis in the Japanese macaque monkey (Macaca fuscata). Primates 2020; 62:113-121. [PMID: 32803510 DOI: 10.1007/s10329-020-00857-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/08/2020] [Indexed: 01/12/2023]
Abstract
Non-human primates are our closest relatives and therefore offer valuable comparative models for human evolutionary studies and biomedical research. As such, Japanese macaques (Macaca fuscata) have contributed to the advancement of primatology in both field and laboratory settings. Specifically, Japanese macaques serve as an excellent model for investigating postnatal development and seasonal breeding in primates because of their relatively prolonged juvenile period and distinct seasonal breeding activity in adulthood. Pioneering histological studies have examined the developmental associations between their reproductive states and spermatogenesis by morphological observation. However, a molecular histological atlas of Japanese macaque spermatogenesis is only in its infancy, limiting our understanding of spermatogenesis ontogeny related to their reproductive changes. Here, we performed immunofluorescence analyses of spermatogenesis in Japanese macaque testes to determine the expression of a subset of marker proteins. The present molecular histological analyses readily specified major spermatogonial subtypes as SALL4+ A spermatogonia and Ki67+/C-KIT+ B spermatogonia. The expression of DAZL, SCP1, γH2AX, VASA, and calmegin further showed sequential changes regarding the protein expression profile and chromosomal structures during spermatogenesis in a differentiation stage-specific manner. Accordingly, comparative analyses between subadults and adults identified spermatogenic deficits in differentiation and synchronization in subadult testes. Our findings provide a new diagnostic platform for dissecting spermatogenic status and reproduction in the Japanese macaques.
Collapse
Affiliation(s)
- Sawako Okada
- Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Kota Kuroki
- Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Cody A Ruiz
- Department of Anthropology, Kent State University, Kent, Ohio, USA.,School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Anthony J Tosi
- Department of Anthropology, Kent State University, Kent, Ohio, USA.,School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Masanori Imamura
- Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan.
| |
Collapse
|
2
|
Enomoto T, Matsubayashi K, Nakano M, Fujii-Hanamoto H, Kusunoki H. Testicular histological examination of spermatogenetic activity in captive gorillas (Gorilla gorilla). Am J Primatol 2004; 63:183-99. [PMID: 15300708 DOI: 10.1002/ajp.20051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To clarify the reproductive state of male gorillas, we performed histological examinations on the testicles of 10 male gorillas (Gorilla gorilla). The testicular samples were obtained by autopsy, and ordinal histological preparations were made for light microscopy. The poor spermatogenesis of this species was characterized by the following findings: First, spermatogenesis was evident in only four samples. Meiosis progressed in two samples, but they lacked spermatogenesis. In the remaining four specimens, seminiferous tubules hyalinized without any sign of spermatogenesis. Second, seminiferous epithelia were thin even in the males in which spermatogenesis was observed. Third, degenerated seminiferous tubules were found in all specimens. Fourth, abnormally large syncytial cells were found in the tubules. Six stages in the epithelial cycle of the seminiferous tubules were identified. Testosterone staining made it clear that there were many Leydig cells with spherical or fusiform nuclei in an abundance of interstitial tissue. The relevance of the testicular architecture of gorillas to the mating system is discussed.
Collapse
Affiliation(s)
- Tomoo Enomoto
- Department of Morphology, Tokai University School of Medicine, Isehara, Japan.
| | | | | | | | | |
Collapse
|
3
|
Seasonal ultrastructural modifications of the seminiferous epithelium in twoEulemur species:E. fulvus andE. macaco. Primates 2001. [DOI: 10.1007/bf02629619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|