1
|
Chen Z, Nohata J, Guo H, Li S, Liu J, Guo Y, Yamamoto K, Kadono-Okuda K, Liu C, Arunkumar KP, Nagaraju J, Zhang Y, Liu S, Labropoulou V, Swevers L, Tsitoura P, Iatrou K, Gopinathan KP, Goldsmith MR, Xia Q, Mita K. A comprehensive analysis of the chorion locus in silkmoth. Sci Rep 2015; 5:16424. [PMID: 26553298 PMCID: PMC4639761 DOI: 10.1038/srep16424] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/12/2015] [Indexed: 11/29/2022] Open
Abstract
Despite more than 40 years of intense study, essential features of the silkmoth chorion (eggshell) are still not fully understood. To determine the precise structure of the chorion locus, we performed extensive EST analysis, constructed a bacterial artificial chromosome (BAC) contig, and obtained a continuous genomic sequence of 871,711 base pairs. We annotated 127 chorion genes in two segments interrupted by a 164 kb region with 5 non-chorion genes, orthologs of which were on chorion bearing scaffolds in 4 ditrysian families. Detailed transcriptome analysis revealed expression throughout choriogenesis of most chorion genes originally categorized as “middle”, and evidence for diverse regulatory mechanisms including cis-elements, alternative splicing and promoter utilization, and antisense RNA. Phylogenetic analysis revealed multigene family associations and faster evolution of early chorion genes and transcriptionally active pseudogenes. Proteomics analysis identified 99 chorion proteins in the eggshell and micropyle localization of 1 early and 6 Hc chorion proteins.
Collapse
Affiliation(s)
- Zhiwei Chen
- State Key Laboratory of Silkworm Genome Biology, Chongqing 400716, China
| | | | - Huizhen Guo
- State Key Laboratory of Silkworm Genome Biology, Chongqing 400716, China
| | - Shenglong Li
- State Key Laboratory of Silkworm Genome Biology, Chongqing 400716, China
| | - Jianqiu Liu
- State Key Laboratory of Silkworm Genome Biology, Chongqing 400716, China
| | - Youbing Guo
- State Key Laboratory of Silkworm Genome Biology, Chongqing 400716, China
| | - Kimiko Yamamoto
- National Institute of Agrobiological Sciences, Tsukuba 305-8634, Japan
| | | | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Chongqing 400716, China
| | | | | | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Chongqing 400716, China
| | - Shiping Liu
- State Key Laboratory of Silkworm Genome Biology, Chongqing 400716, China
| | - Vassiliki Labropoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences &Applications, National Centre for Scientific Research "Demokritos", Athens 15310, Greece
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences &Applications, National Centre for Scientific Research "Demokritos", Athens 15310, Greece
| | - Panagiota Tsitoura
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences &Applications, National Centre for Scientific Research "Demokritos", Athens 15310, Greece
| | - Kostas Iatrou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences &Applications, National Centre for Scientific Research "Demokritos", Athens 15310, Greece
| | | | | | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Chongqing 400716, China
| | - Kazuei Mita
- State Key Laboratory of Silkworm Genome Biology, Chongqing 400716, China
| |
Collapse
|
2
|
Abstract
Pseudogenes have been defined as nonfunctional sequences of genomic DNA originally derived from functional genes. It is therefore assumed that all pseudogene mutations are selectively neutral and have equal probability to become fixed in the population. Rather, pseudogenes that have been suitably investigated often exhibit functional roles, such as gene expression, gene regulation, generation of genetic (antibody, antigenic, and other) diversity. Pseudogenes are involved in gene conversion or recombination with functional genes. Pseudogenes exhibit evolutionary conservation of gene sequence, reduced nucleotide variability, excess synonymous over nonsynonymous nucleotide polymorphism, and other features that are expected in genes or DNA sequences that have functional roles. We first review the Drosophila literature and then extend the discussion to the various functional features identified in the pseudogenes of other organisms. A pseudogene that has arisen by duplication or retroposition may, at first, not be subject to natural selection if the source gene remains functional. Mutant alleles that incorporate new functions may, nevertheless, be favored by natural selection and will have enhanced probability of becoming fixed in the population. We agree with the proposal that pseudogenes be considered as potogenes, i.e., DNA sequences with a potentiality for becoming new genes.
Collapse
Affiliation(s)
- Evgeniy S Balakirev
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697-2525, USA.
| | | |
Collapse
|