1
|
Lei X, Liu S, Zhou R, Meng XY. Molecular Dynamics Simulation Study on Interactions of Cycloviolacin with Different Phospholipids. J Phys Chem B 2021; 125:3476-3485. [PMID: 33787269 DOI: 10.1021/acs.jpcb.0c10513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cyclotides are disulfide-rich cyclic peptides isolated from plants, which are extremely stable against thermal and proteolytic degradation, with a variety of biological activities including antibacterial, hemolytic, anti-HIV, and anti-tumor. Most of these bioactivities are related to their preference for binding to certain types of phospholipids and subsequently disrupt lipid membranes. In the present study, we use a cyclotide, cycloviolacin O2 (cyO2), as a model system to investigate its interactions with three lipid bilayers 1-palmitoyl-2-oleoylphosphatidylethanolamine (POPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG)-doped POPE, and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), to help understand its potential mechanism of action toward the membranes at the molecular level using molecular dynamics simulations. In our simulations, cyO2 repeatedly forms stable binding complexes with the POPE-containing bilayers, while within the same simulation time scale, it "jumps" back and forth on the surface of the POPC bilayer without a strong binding. Detailed analyses reveal that the electrostatic attraction is the main driving force for the initial bindings between cyO2 and the lipids, but with strikingly different strengths in different bilayers. For the POPE-containing bilayers, the charged residues of cyO2 attract both POPE amino and phosphate head groups favorably; meanwhile, its hydrophobic residues are deeply inserted into the lipid hydrophobic tails (core) of the membrane, thus forming stable binding complexes. In contrast, POPC lipids with three methyl groups on the amino head group create a steric hindrance when interacting with cyO2, thus resulting in a relatively difficult binding of cyO2 on POPC compared to POPE. Our current findings provide additional insights for a better understanding of how cyO2 binds to the POPE-containing membrane, which should shed light on the future cyclotide-based antibacterial agent design.
Collapse
Affiliation(s)
- Xiaotong Lei
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shengtang Liu
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ruhong Zhou
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Xuan-Yu Meng
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Pinto MEF, Chan LY, Koehbach J, Devi S, Gründemann C, Gruber CW, Gomes M, Bolzani VS, Cilli EM, Craik DJ. Cyclotides from Brazilian Palicourea sessilis and Their Effects on Human Lymphocytes. JOURNAL OF NATURAL PRODUCTS 2021; 84:81-90. [PMID: 33397096 PMCID: PMC7836058 DOI: 10.1021/acs.jnatprod.0c01069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Indexed: 05/05/2023]
Abstract
Cyclotides are plant-derived peptides found within five families of flowering plants (Violaceae, Rubiaceae, Fabaceae, Solanaceae, and Poaceae) that have a cyclic backbone and six conserved cysteine residues linked by disulfide bonds. Their presence within the Violaceae species seems ubiquitous, yet not all members of other families produce these macrocyclic peptides. The genus Palicourea Aubl. (Rubiaceae) contains hundreds of neotropical species of shrubs and small trees; however, only a few cyclotides have been discovered hitherto. Herein, five previously uncharacterized Möbius cyclotides within Palicourea sessilis and their pharmacological activities are described. Cyclotides were isolated from leaves and stems of this plant and identified as pase A-E, as well as the known peptide kalata S. Cyclotides were de novo sequenced by MALDI-TOF/TOF mass spectrometry, and their structures were solved by NMR spectroscopy. Because some cyclotides have been reported to modulate immune cells, pase A-D were assayed for cell proliferation of human primary activated T lymphocytes, and the results showed a dose-dependent antiproliferative function. The toxicity on other nonimmune cells was also assessed. This study reveals that pase cyclotides have potential for applications as immunosuppressants and in immune-related disorders.
Collapse
Affiliation(s)
- Meri Emili F. Pinto
- Institute
of Chemistry, São Paulo State University−UNESP, Araraquara, 14800-060 SP, Brazil
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Lai Yue Chan
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Johannes Koehbach
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Seema Devi
- Institute
for Infection Prevention and Hospital Epidemiology, Center for Complementary
Medicine, University of Freiburg, 79111 Freiburg, Germany
| | - Carsten Gründemann
- Translational
Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | - Christian W. Gruber
- Center
for Physiology and Pharmacology, Medical
University of Vienna, 1090 Vienna, Austria
| | - Mario Gomes
- Rio
de Janeiro
Botanic Garden Research Institute−JBRJ, Rio de Janeiro, 22470-180 RJ, Brazil
| | - Vanderlan S. Bolzani
- Institute
of Chemistry, São Paulo State University−UNESP, Araraquara, 14800-060 SP, Brazil
| | - Eduardo Maffud Cilli
- Institute
of Chemistry, São Paulo State University−UNESP, Araraquara, 14800-060 SP, Brazil
| | - David J. Craik
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, 4072 Queensland, Australia
| |
Collapse
|
3
|
Abstract
This Review explores the class of plant-derived macrocyclic peptides called cyclotides. We include an account of their discovery, characterization, and distribution in the plant kingdom as well as a detailed analysis of their sequences and structures, biosynthesis and chemical synthesis, biological functions, and applications. These macrocyclic peptides are around 30 amino acids in size and are characterized by their head-to-tail cyclic backbone and cystine knot motif, which render them to be exceptionally stable, with resistance to thermal or enzymatic degradation. Routes to their chemical synthesis have been developed over the past two decades, and this capability has facilitated a wide range of mutagenesis and structure-activity relationship studies. In turn, these studies have both led to an increased understanding of their mechanisms of action as well as facilitated a range of applications in agriculture and medicine, as ecofriendly crop protection agents, and as drug leads or scaffolds for pharmaceutical design. Our overall objective in this Review is to provide readers with a comprehensive overview of cyclotides that we hope will stimulate further work on this fascinating family of peptides.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Meng-Wei Kan
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
4
|
Weidmann J, Craik DJ. Discovery, structure, function, and applications of cyclotides: circular proteins from plants. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4801-12. [PMID: 27222514 DOI: 10.1093/jxb/erw210] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cyclotides are plant-derived cyclic peptides that have a head-to-tail cyclic backbone and three conserved disulphide bonds that form a cyclic cystine knot motif. They occur in plants from the Violaceae, Rubiaceae, Cucurbitaceae, Fabaceae, and Solanaceae families, typically with 10-100 cyclotides in a given plant species, in a wide range of tissues, including flowers, leaves, stems, and roots. Some cyclotides are expressed in large amounts (up to 1g kg(-1) wet plant weight) and their natural function appears to be to protect plants from pests or pathogens. This article provides a brief overview of their discovery, distribution in plants, and applications. In particular, their exceptional stability has led to their use as peptide-based scaffolds in drug design applications. They also have potential as natural 'ecofriendly' insecticides, and as protein engineering frameworks.
Collapse
Affiliation(s)
- Joachim Weidmann
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
5
|
Gly6 of kalata B1 is critical for the selective binding to phosphatidylethanolamine membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2354-61. [DOI: 10.1016/j.bbamem.2012.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 03/29/2012] [Accepted: 04/10/2012] [Indexed: 11/18/2022]
|
6
|
Craik DJ. Host-defense activities of cyclotides. Toxins (Basel) 2012; 4:139-56. [PMID: 22474571 PMCID: PMC3317112 DOI: 10.3390/toxins4020139] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/25/2012] [Accepted: 01/31/2012] [Indexed: 11/27/2022] Open
Abstract
Cyclotides are plant mini-proteins whose natural function is thought to be to protect plants from pest or pathogens, particularly insect pests. They are approximately 30 amino acids in size and are characterized by a cyclic peptide backbone and a cystine knot arrangement of three conserved disulfide bonds. This article provides an overview of the reported pesticidal or toxic activities of cyclotides, discusses a possible common mechanism of action involving disruption of biological membranes in pest species, and describes methods that can be used to produce cyclotides for potential applications as novel pesticidal agents.
Collapse
Affiliation(s)
- David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
7
|
Abstract
The cyclotides are a family of disulfide-rich proteins from plants. They have the characteristic structural features of a circular protein backbone and a knotted arrangement of disulfide bonds. Structural and biochemical studies of the cyclotides suggest that their unique physiological stability can be loaned to bioactive peptide fragments for pharmaceutical and agricultural development. In particular, the cyclotides incorporate a number of solvent-exposed loops that are potentially suitable for epitope grafting applications. Here, we determine the structure of the largest known cyclotide, palicourein, which has an atypical size and composition within one of the surface-exposed loops. The structural data show that an increase in size of a palicourein loop does not perturb the core fold, to which the thermodynamic and chemical stability has been attributed. The cyclotide core fold, thus, can in principle be used as a framework for the development of useful pharmaceutical and agricultural bioactivities.
Collapse
Affiliation(s)
- Daniel G Barry
- Institute for Molecular Bioscience, Queensland Bioscience Precinct, The University of Queensland Brisbane, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|