1
|
Rios AC, Moutinho CG, Pinto FC, Del Fiol FS, Jozala A, Chaud MV, Vila MMDC, Teixeira JA, Balcão VM. Alternatives to overcoming bacterial resistances: State-of-the-art. Microbiol Res 2016; 191:51-80. [PMID: 27524653 DOI: 10.1016/j.micres.2016.04.008] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/28/2016] [Accepted: 04/21/2016] [Indexed: 12/23/2022]
Abstract
Worldwide, bacterial resistance to chemical antibiotics has reached such a high level that endangers public health. Presently, the adoption of alternative strategies that promote the elimination of resistant microbial strains from the environment is of utmost importance. This review discusses and analyses several (potential) alternative strategies to current chemical antibiotics. Bacteriophage (or phage) therapy, although not new, makes use of strictly lytic phage particles as an alternative, or a complement, in the antimicrobial treatment of bacterial infections. It is being rediscovered as a safe method, because these biological entities devoid of any metabolic machinery do not possess any affinity whatsoever to eukaryotic cells. Lysin therapy is also recognized as an innovative antimicrobial therapeutic option, since the topical administration of preparations containing purified recombinant lysins with amounts in the order of nanograms, in infections caused by Gram-positive bacteria, demonstrated a high therapeutic potential by causing immediate lysis of the target bacterial cells. Additionally, this therapy exhibits the potential to act synergistically when combined with certain chemical antibiotics already available on the market. Another potential alternative antimicrobial therapy is based on the use of antimicrobial peptides (AMPs), amphiphilic polypeptides that cause disruption of the bacterial membrane and can be used in the treatment of bacterial, fungal and viral infections, in the prevention of biofilm formation, and as antitumoral agents. Interestingly, bacteriocins are a common strategy of bacterial defense against other bacterial agents, eliminating the potential opponents of the former and increasing the number of available nutrients in the environment for their own growth. They can be applied in the food industry as biopreservatives and as probiotics, and also in fighting multi-resistant bacterial strains. The use of antibacterial antibodies promises to be extremely safe and effective. Additionally, vaccination emerges as one of the most promising preventive strategies. All these will be tackled in detail in this review paper.
Collapse
Affiliation(s)
- Alessandra C Rios
- LaBNUS-Biomaterials and Nanotechnology Laboratory, i(bs)2i(bs)(2)-intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba/SP, Brazil
| | - Carla G Moutinho
- CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal; University Fernando Pessoa, Porto, Portugal
| | | | - Fernando S Del Fiol
- LaBNUS-Biomaterials and Nanotechnology Laboratory, i(bs)2i(bs)(2)-intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba/SP, Brazil
| | - Angela Jozala
- LaBNUS-Biomaterials and Nanotechnology Laboratory, i(bs)2i(bs)(2)-intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba/SP, Brazil
| | - Marco V Chaud
- LaBNUS-Biomaterials and Nanotechnology Laboratory, i(bs)2i(bs)(2)-intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba/SP, Brazil
| | - Marta M D C Vila
- LaBNUS-Biomaterials and Nanotechnology Laboratory, i(bs)2i(bs)(2)-intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba/SP, Brazil
| | - José A Teixeira
- CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Victor M Balcão
- LaBNUS-Biomaterials and Nanotechnology Laboratory, i(bs)2i(bs)(2)-intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba/SP, Brazil; CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal.
| |
Collapse
|
2
|
Rahnamaeian M, Cytryńska M, Zdybicka-Barabas A, Dobslaff K, Wiesner J, Twyman RM, Zuchner T, Sadd BM, Regoes RR, Schmid-Hempel P, Vilcinskas A. Insect antimicrobial peptides show potentiating functional interactions against Gram-negative bacteria. Proc Biol Sci 2016; 282:20150293. [PMID: 25833860 PMCID: PMC4426631 DOI: 10.1098/rspb.2015.0293] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) and proteins are important components of innate
immunity against pathogens in insects. The production of AMPs is costly owing to
resource-based trade-offs, and strategies maximizing the efficacy of AMPs at low
concentrations are therefore likely to be advantageous. Here, we show the
potentiating functional interaction of co-occurring insect AMPs (the bumblebee
linear peptides hymenoptaecin and abaecin) resulting in more potent
antimicrobial effects at low concentrations. Abaecin displayed no detectable
activity against Escherichia coli when tested alone at
concentrations of up to 200 μM, whereas hymenoptaecin affected bacterial
cell growth and viability but only at concentrations greater than 2 μM.
In combination, as little as 1.25 μM abaecin enhanced the bactericidal
effects of hymenoptaecin. To understand these potentiating functional
interactions, we investigated their mechanisms of action using atomic force
microscopy and fluorescence resonance energy transfer-based quenching assays.
Abaecin was found to reduce the minimal inhibitory concentration of
hymenoptaecin and to interact with the bacterial chaperone DnaK (an
evolutionarily conserved central organizer of the bacterial chaperone network)
when the membrane was compromised by hymenoptaecin. These naturally occurring
potentiating interactions suggest that combinations of AMPs could be used
therapeutically against Gram-negative bacterial pathogens that have acquired
resistance to common antibiotics.
Collapse
Affiliation(s)
- Mohammad Rahnamaeian
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, Giessen 35394, Germany
| | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biology and Biochemistry, Maria Curie-Sklodowska University, Akademicka Street 19, Lublin 20-033, Poland
| | - Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biology and Biochemistry, Maria Curie-Sklodowska University, Akademicka Street 19, Lublin 20-033, Poland
| | - Kristin Dobslaff
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and Center of Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, Leipzig 04103, Germany
| | - Jochen Wiesner
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, Giessen 35394, Germany
| | - Richard M Twyman
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, Giessen 35394, Germany TRM Ltd, PO Box 93, York YO43 3WE, UK
| | - Thole Zuchner
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and Center of Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, Leipzig 04103, Germany
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, IL 61790, USA
| | - Roland R Regoes
- ETH Zürich, Institute of Integrative Biology, ETH-Zentrum CHN, Universitätsstrasse 16, Zürich 8092, Switzerland
| | - Paul Schmid-Hempel
- ETH Zürich, Institute of Integrative Biology, ETH-Zentrum CHN, Universitätsstrasse 16, Zürich 8092, Switzerland
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, Giessen 35394, Germany Institute of Phytopathology and Applied Zoology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, Giessen 35392, Germany
| |
Collapse
|
3
|
Narayanan S, Modak JK, Ryan CS, Garcia-Bustos J, Davies JK, Roujeinikova A. Mechanism of Escherichia coli resistance to Pyrrhocoricin. Antimicrob Agents Chemother 2014; 58:2754-62. [PMID: 24590485 PMCID: PMC3993218 DOI: 10.1128/aac.02565-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 02/23/2014] [Indexed: 01/07/2023] Open
Abstract
Due to their lack of toxicity to mammalian cells and good serum stability, proline-rich antimicrobial peptides (PR-AMPs) have been proposed as promising candidates for the treatment of infections caused by antimicrobial-resistant bacterial pathogens. It has been hypothesized that these peptides act on multiple targets within bacterial cells, and therefore the likelihood of the emergence of resistance was considered to be low. Here, we show that spontaneous Escherichia coli mutants resistant to pyrrhocoricin arise at a frequency of approximately 6 × 10(-7). Multiple independently derived mutants all contained a deletion in a nonessential gene that encodes the putative peptide uptake permease SbmA. Sensitivity could be restored to the mutants by complementation with an intact copy of the sbmA gene. These findings question the viability of the development of insect PR-AMPs as antimicrobials.
Collapse
Affiliation(s)
- Shalini Narayanan
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Joyanta K. Modak
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Catherine S. Ryan
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jose Garcia-Bustos
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - John K. Davies
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Anna Roujeinikova
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
4
|
Cellitti J, Zhang Z, Wang S, Wu B, Yuan H, Hasegawa P, Guiney DG, Pellecchia M. Small molecule DnaK modulators targeting the beta-domain. Chem Biol Drug Des 2009; 74:349-57. [PMID: 19694756 DOI: 10.1111/j.1747-0285.2009.00869.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular chaperone DnaK is essential for the survival of bacterial pathogens in the hostile environment of the host. Hence, it is in principle a promising target for drug design but for which no current inhibitors are available apart from certain antimicrobial peptides. To this end, we have screened libraries of small molecules for their ability to interact with the substrate-binding domain of DnaK. The most promising hit from the screen was synthesized and along with its analogs subjected to further assays to determine their binding affinity and ability to interfere with bacterial growth. This work resulted in the identification of a number of compounds that bind with submicromolar affinity and capable of inhibiting Yersinia pseudotuberculosis growth more effectively than the previously characterized peptides.
Collapse
Affiliation(s)
- Jason Cellitti
- Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
ZHOU XUXIA, LI WEIFEN, PAN YUANJIANG. Functional and structural characterization of apidaecin and itsN-terminal andC-terminal fragments. J Pept Sci 2007; 14:697-707. [DOI: 10.1002/psc.976] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Cudic M, Condie BA, Weiner DJ, Lysenko ES, Xiang ZQ, Insug O, Bulet P, Otvos L. Development of novel antibacterial peptides that kill resistant isolates. Peptides 2002; 23:2071-83. [PMID: 12535685 DOI: 10.1016/s0196-9781(02)00244-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The rapid emergence of bacterial strains that are resistant to current antibiotics requires the development of novel types of antimicrobial compounds. Proline-rich cationic antibacterial peptides such as pyrrhocoricin kill responsive bacteria by binding to the 70 kDa heat shock protein DnaK and inhibiting protein folding. We designed and synthesized multiply protected dimeric analogs of pyrrhocoricin and optimized the in vitro antibacterial efficacy assays for peptide antibiotics. Pyrrhocoricin and the designed dimers killed beta-lactam, tetracycline- or aminoglycoside-resistant strains of Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the submicromolar or low micromolar concentration range. One of the peptides also killed Pseudomonas aeruginosa. The designed dimers showed improved stability in mammalian sera compared to the native analog. In a murine H. influenzae lung infection model, a single dose of a dimeric pyrrhocoricin analog reduced the bacteria in the bronchoalveolar lavage when delivered intranasally. The solid-phase synthesis was optimized for large-scale laboratory preparations.
Collapse
Affiliation(s)
- Mare Cudic
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kragol G, Hoffmann R, Chattergoon MA, Lovas S, Cudic M, Bulet P, Condie BA, Rosengren KJ, Montaner LJ, Otvos L. Identification of crucial residues for the antibacterial activity of the proline-rich peptide, pyrrhocoricin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4226-37. [PMID: 12199701 DOI: 10.1046/j.1432-1033.2002.03119.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Members of the proline-rich antibacterial peptide family, pyrrhocoricin, apidaecin and drosocin appear to kill responsive bacterial species by binding to the multihelical lid region of the bacterial DnaK protein. Pyrrhocoricin, the most potent among these peptides, is nontoxic to healthy mice, and can protect these animals from bacterial challenge. A structure-antibacterial activity study of pyrrhocoricin against Escherichia coli and Agrobacterium tumefaciens identified the N-terminal half, residues 2-10, the region responsible for inhibition of the ATPase activity, as the fragment that contains the active segment. While fluorescein-labeled versions of the native peptides entered E. coli cells, deletion of the C-terminal half of pyrrhocoricin significantly reduced the peptide's ability to enter bacterial or mammalian cells. These findings highlighted pyrrhocoricin's suitability for combating intracellular pathogens and raised the possibility that the proline-rich antibacterial peptides can deliver drug leads into mammalian cells. By observing strong relationships between the binding to a synthetic fragment of the target protein and antibacterial activities of pyrrhocoricin analogs modified at strategic positions, we further verified that DnaK was the bacterial target macromolecule. Inaddition, the antimicrobial activity spectrum of native pyrrhocoricin against 11 bacterial and fungal strains and the binding of labeled pyrrhocoricin to synthetic DnaK D-E helix fragments of the appropriate species could be correlated. Mutational analysis on a synthetic E. coli DnaK fragment identified a possible binding surface for pyrrhocoricin.
Collapse
Affiliation(s)
- Goran Kragol
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|