Erdem-Tuncmen M, Karipcin F, Sariboga B. Synthesis and characterization of novel organocobaloximes as potential catecholase and antimicrobial activity agents.
Arch Pharm (Weinheim) 2013;
346:718-26. [PMID:
24003018 DOI:
10.1002/ardp.201300168]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/10/2013] [Accepted: 07/16/2013] [Indexed: 11/11/2022]
Abstract
An asymmetric, potentially bidentate dioxime ligand (H₂L) was formed by condensation of 4-biphenylchloroglyoxime and napthyl-1-amine. Two equivalents of H₂L were reacted with CoCl₂ · 6H₂O under appropriate conditions with deprotonation of the dioxime ligand. A series of new organocobaloxime derivatives of the type [CoR(HL)₂Py], [CoRL₂PyB₂F₄], and [CoRL₂Py(Cu(phen))₂] (H₂L = 4-(napthyl-1-amino)biphenylglyoxime; phen = 1,10-phenathroline; R = izopropyl and benzyl; Py = pyridine) were synthesized. The products were characterized by elemental analysis, molar conductance, FT-IR, ¹H NMR, and magnetic susceptibility measurements. Catecholase-like activity properties of all complexes were also studied. All complexes are catalysts for the oxidation of 3,5-di-tert-butylcatechol to 3,5-di-tert-butyl-1,2-benzoquinone in methanol. Antimicrobial activity studies of H₂L and the six complexes were carried out on standard strains (human pathogenic) of bacteria (Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Bacillus cereus, Enterococcus faecalis, Streptococcus pneumoniae, Listeria monocytogenes, Bacillus subtilis, Escherichia coli, Pseudominas aeruginosa, Salmonella typhi) and the yeast Candida albicans. The compounds showed a significant inhibition of the growth of the Gram-positive bacteria tested. Among the tested microorganisms, S. aureus was the most sensitive strain, especially to H₂L and its complexes.
Collapse