1
|
Ouarné M, Pena A, Ramalho D, Conchinha NV, Costa T, Enjalbert R, Figueiredo AM, Saraiva MP, Carvalho Y, Bernabeu MO, Henao Misikova L, Oh SP, Franco CA. A non-genetic model of vascular shunts informs on the cellular mechanisms of formation and resolution of arteriovenous malformations. Cardiovasc Res 2024; 120:1967-1984. [PMID: 39308243 PMCID: PMC11629978 DOI: 10.1093/cvr/cvae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/11/2024] [Accepted: 05/23/2024] [Indexed: 12/11/2024] Open
Abstract
AIMS Arteriovenous malformations (AVMs), a disorder characterized by direct shunts between arteries and veins, are associated with genetic mutations. However, the mechanisms leading to AV shunt formation and how shunts can be reverted are poorly understood. METHODS AND RESULTS Here, we report that oxygen-induced retinopathy (OIR) protocol leads to the consistent and stereotypical formation of AV shunts in non-genetically altered mice. OIR-induced AV shunts show all the canonical markers of AVMs. Genetic and pharmacological interventions demonstrated that changes in the volume of venous endothelial cells (EC)-hypertrophic venous cells-are the initiating step promoting AV shunt formation, whilst EC proliferation or migration played minor roles. Inhibition of the mTOR pathway prevents pathological increases in EC volume and significantly reduces the formation of AV shunts. Importantly, we demonstrate that ALK1 signalling cell-autonomously regulates EC volume in pro-angiogenic conditions, establishing a link with hereditary haemorrhagic telangiectasia-related AVMs. Finally, we demonstrate that a combination of EC volume control and EC migration is associated with the regression of AV shunts. CONCLUSION Our findings highlight that an increase in the EC volume is the key mechanism driving the initial stages of AV shunt formation, leading to asymmetric capillary diameters. Based on our results, we propose a coherent and unifying timeline leading to the fast conversion of a capillary vessel into an AV shunt. Our data advocate for further investigation into the mechanisms regulating EC volume in health and disease as a way to identify therapeutic approaches to prevent and revert AVMs.
Collapse
Affiliation(s)
- Marie Ouarné
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Andreia Pena
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
- Católica Biomedical Research Centre, Universidade Católica Portuguesa, Católica Medical School, Lisbon 1649-023, Portugal
| | - Daniela Ramalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
- Católica Biomedical Research Centre, Universidade Católica Portuguesa, Católica Medical School, Lisbon 1649-023, Portugal
| | - Nadine V Conchinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Tiago Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Romain Enjalbert
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh EH16 4UX, UK
| | - Ana M Figueiredo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Marta Pimentel Saraiva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Yulia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Miguel O Bernabeu
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh EH16 4UX, UK
- The Bayes Centre, The University of Edinburgh, Edinburgh EH8 9BT, UK
| | - Lenka Henao Misikova
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
- Católica Biomedical Research Centre, Universidade Católica Portuguesa, Católica Medical School, Lisbon 1649-023, Portugal
| | - S Paul Oh
- Barrow Aneurysm & AVM Research Center, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Cláudio A Franco
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
- Católica Biomedical Research Centre, Universidade Católica Portuguesa, Católica Medical School, Lisbon 1649-023, Portugal
| |
Collapse
|
2
|
Dammann O, Stansfield BK. Neonatal sepsis as a cause of retinopathy of prematurity: An etiological explanation. Prog Retin Eye Res 2024; 98:101230. [PMID: 37984792 PMCID: PMC10842718 DOI: 10.1016/j.preteyeres.2023.101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Retinopathy of prematurity (ROP) is a complex neonatal disorder with multiple contributing factors. In this paper we have mounted the evidence in support of the proposal that neonatal sepsis meets all requirements for being a cause of ROP (not a condition, mechanism, or even innocent bystander) by means of initiating the early stages of the pathomechanism of ROP occurrence, systemic inflammation. We use the model of etiological explanation, which distinguishes between two overlapping processes in ROP causation. It can be shown that sepsis can initiate the early stages of the pathomechanism via systemic inflammation (causation process) and that systemic inflammation can contribute to growth factor aberrations and the retinal characteristics of ROP (disease process). The combined contribution of these factors with immaturity at birth (as intrinsic risk modifier) and prenatal inflammation (as extrinsic facilitator) seems to provide a cogent functional framework of ROP occurrence. Finally, we apply the Bradford Hill heuristics to the available evidence. Taken together, the above suggests that neonatal sepsis is a causal inducer of ROP.
Collapse
Affiliation(s)
- Olaf Dammann
- Dept. of Public Health & Community Medicine, Tufts University School of Medicine, Boston, USA; Dept. of Gynecology & Obstetrics, Hannover Medical School, Hannover, Germany; Dept. of Neuromedicine & Movement Science, Norwegian University of Science & Technology, Trondheim, Norway; Dept. of Philosophy, University of Johannesburg, Johannesburg, South Africa.
| | | |
Collapse
|
3
|
Tomita Y, Usui-Ouchi A, Nilsson AK, Yang J, Ko M, Hellström A, Fu Z. Metabolism in Retinopathy of Prematurity. Life (Basel) 2021; 11:1119. [PMID: 34832995 PMCID: PMC8620873 DOI: 10.3390/life11111119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Retinopathy of prematurity is defined as retinal abnormalities that occur during development as a consequence of disturbed oxygen conditions and nutrient supply after preterm birth. Both neuronal maturation and retinal vascularization are impaired, leading to the compensatory but uncontrolled retinal neovessel growth. Current therapeutic interventions target the hypoxia-induced neovessels but negatively impact retinal neurons and normal vessels. Emerging evidence suggests that metabolic disturbance is a significant and underexplored risk factor in the disease pathogenesis. Hyperglycemia and dyslipidemia correlate with the retinal neurovascular dysfunction in infants born prematurely. Nutritional and hormonal supplementation relieve metabolic stress and improve retinal maturation. Here we focus on the mechanisms through which metabolism is involved in preterm-birth-related retinal disorder from clinical and experimental investigations. We will review and discuss potential therapeutic targets through the restoration of metabolic responses to prevent disease development and progression.
Collapse
Affiliation(s)
- Yohei Tomita
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.T.); (J.Y.); (M.K.)
| | - Ayumi Usui-Ouchi
- Department of Ophthalmology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan;
| | - Anders K. Nilsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 413 19 Gothenburg, Sweden; (A.K.N.); (A.H.)
| | - Jay Yang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.T.); (J.Y.); (M.K.)
| | - Minji Ko
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.T.); (J.Y.); (M.K.)
| | - Ann Hellström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 413 19 Gothenburg, Sweden; (A.K.N.); (A.H.)
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.T.); (J.Y.); (M.K.)
| |
Collapse
|
4
|
Joharapurkar A, Patel V, Kshirsagar S, Patel MS, Savsani H, Jain M. Effect of dual PPAR-α/γ agonist saroglitazar on diabetic retinopathy and oxygen-induced retinopathy. Eur J Pharmacol 2021; 899:174032. [PMID: 33753107 DOI: 10.1016/j.ejphar.2021.174032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 01/27/2023]
Abstract
Diabetic retinopathy is a serious complication of diabetes, marked by retinal vascular damage, inflammation, and angiogenesis. This study's objective was to assess the potential benefits of saroglitazar, a peroxisome proliferator-activated receptor-alpha/gamma (PPAR-α/γ) agonist in diabetic retinopathy. Diabetic retinopathy was induced by streptozotocin in Sprague Dawley rats. The effect of saroglitazar was also assessed in the oxygen-induced retinopathy model in newborn rats and VEGF-induced angiogenesis in the chick chorioallantoic membrane (CAM) assay. Treatment of saroglitazar (1 and 4 mg/kg, oral) for 12 weeks significantly ameliorated retinal vascular leakage and leukostasis in the diabetic rats. Saroglitazar decreased oxidative stress, VEGF receptor signalling, NF-κBp65, and ICAM-1 in the retina of diabetic rats. The beneficial effects of saroglitazar (1 and 4 mg/kg, oral) were also observed on the neovascularization in oxygen-induced retinopathy in newborn rats. Saroglitazar also reduced VEGF-induced angiogenesis in CAM assay. This study reveals that saroglitazar has the potential to prevent the progression of retinopathy in diabetic patients.
Collapse
Affiliation(s)
- Amit Joharapurkar
- Department of Pharmacology and Toxicology, Zydus Research Centre, Cadila Healthcare Limited, Sarkhej Bavla NH 8A, Moraiya, Ahmedabad, 382210, India.
| | - Vishal Patel
- Department of Pharmacology and Toxicology, Zydus Research Centre, Cadila Healthcare Limited, Sarkhej Bavla NH 8A, Moraiya, Ahmedabad, 382210, India
| | - Samadhan Kshirsagar
- Department of Pharmacology and Toxicology, Zydus Research Centre, Cadila Healthcare Limited, Sarkhej Bavla NH 8A, Moraiya, Ahmedabad, 382210, India
| | - Maulik S Patel
- Department of Pharmacology and Toxicology, Zydus Research Centre, Cadila Healthcare Limited, Sarkhej Bavla NH 8A, Moraiya, Ahmedabad, 382210, India
| | - Hardikkumar Savsani
- Department of Pharmacology and Toxicology, Zydus Research Centre, Cadila Healthcare Limited, Sarkhej Bavla NH 8A, Moraiya, Ahmedabad, 382210, India
| | - Mukul Jain
- Department of Pharmacology and Toxicology, Zydus Research Centre, Cadila Healthcare Limited, Sarkhej Bavla NH 8A, Moraiya, Ahmedabad, 382210, India
| |
Collapse
|
5
|
Decreasing intraocular pressure significantly improves retinal vessel density, cytoarchitecture and visual function in rodent oxygen induced retinopathy. SCIENCE CHINA-LIFE SCIENCES 2019; 63:290-300. [PMID: 31728829 DOI: 10.1007/s11427-018-9559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/08/2019] [Indexed: 10/25/2022]
Abstract
We attempted to explore a noninvasive, easily applicable and economically affordable therapy for retinopathy of prematurity (ROP). Rat pups were raised in 80% oxygen from postnatal day 7 to P12, and returned to room air. Travoprost eye drops were administered twice a day for 7 days, to reduce intraocular pressure (IOP) by about 20%. Immunohistochemical staining was performed to visualize vessel endothelial cells, to analyze retinal neurons and cytoarchitecture. Behavioral experiments were carried out to test visual acuity and contrast sensitivity. At the end of the 7-day treatment, the number of vessels extending to the vitreous body was significantly reduced and retinal vessel density increased. This improvement was maintained to the end of the 12th week. In the central retina of the model group, the horizontal cells were completely wiped out, the outer plexiform layer was undetectable, and the rod bipolar cell dendrites sprouted into the outer nuclear layer. The treatment partially reverted these architectural changes. Most importantly, behavioral experiments revealed significantly improved visual acuity and contrast sensitivity in the treated group. Therefore, reducing IOP could potentially serve as a safe and economical measure to treat ROP.
Collapse
|
6
|
Elmasry K, Ibrahim AS, Abdulmoneim S, Al-Shabrawey M. Bioactive lipids and pathological retinal angiogenesis. Br J Pharmacol 2019; 176:93-109. [PMID: 30276789 PMCID: PMC6284336 DOI: 10.1111/bph.14507] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/14/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022] Open
Abstract
Angiogenesis, disruption of the retinal barrier, leukocyte-adhesion and oedema are cardinal signs of proliferative retinopathies that are associated with vision loss. Therefore, identifying factors that regulate these vascular dysfunctions is critical to target pathological angiogenesis. Given the conflicting role of bioactive lipids reported in the current literature, the goal of this review is to provide the reader a clear road map of what has been accomplished so far in the field with specific focus on the role of polyunsaturated fatty acids (PUFAs)-derived metabolites in proliferative retinopathies. This necessarily entails a description of the different retina cells, blood retina barriers and the role of (PUFAs)-derived metabolites in diabetic retinopathy, retinopathy of prematurity and age-related macular degeneration as the most common types of proliferative retinopathies.
Collapse
Affiliation(s)
- Khaled Elmasry
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
- Cellular Biology and Anatomy, MCG, Augusta University, Augusta, GA, USA
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Schepens Eye Research Institute/Massachusetts Eye and Ear & Department of ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Ahmed S Ibrahim
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Ophthalmology and Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, GA, USA
| | - Samer Abdulmoneim
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
- Cellular Biology and Anatomy, MCG, Augusta University, Augusta, GA, USA
| | - Mohamed Al-Shabrawey
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
- Cellular Biology and Anatomy, MCG, Augusta University, Augusta, GA, USA
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Ophthalmology and Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, GA, USA
| |
Collapse
|
7
|
Wu J, Ke X, Fu W, Gao X, Zhang H, Wang W, Ma N, Zhao M, Hao X, Zhang Z. Inhibition of Hypoxia-Induced Retinal Angiogenesis by Specnuezhenide, an Effective Constituent of Ligustrum lucidum Ait., through Suppression of the HIF-1α/VEGF Signaling Pathway. Molecules 2016; 21:molecules21121756. [PMID: 28009852 PMCID: PMC6272965 DOI: 10.3390/molecules21121756] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/10/2016] [Accepted: 12/17/2016] [Indexed: 11/30/2022] Open
Abstract
Specnuezhenide (SPN), one of the main ingredients of Chinese medicine “Nü-zhen-zi”, has anti-angiogenic and vision improvement effects. However, studies of its effect on retinal neovascularization are limited so far. In the present study, we established a vascular endothelial growth factor A (VEGFA) secretion model of human acute retinal pigment epithelial-19 (ARPE-19) cells by exposure of 150 μM CoCl2 to the cells and determined the VEGFA concentrations, the mRNA expressions of VEGFA, hypoxia inducible factor-1α (HIF-1α) & prolyl hydroxylases 2 (PHD-2), and the protein expressions of HIF-1α and PHD-2 after treatment of 3-(5′-hydroxymethyl-2′-furyl)-1-benzylindazole (YC-1, 1.0 μg/mL) or SPN (0.2, 1.0 and 5.0 μg/mL). Furthermore, rat pups with retinopathy were treated with SPN (5.0 and 10.0 mg/kg) in an 80% oxygen atmosphere and the retinal avascular areas were assessed through visualization using infusion of ADPase and H&E stains. The results showed that SPN inhibited VEGFA secretion by ARPE-19 cells under hypoxia condition, down-regulated the mRNA expressions of VEGFA and PHD-2 slightly, and the protein expressions of VEGFA, HIF-1α and PHD-2 significantly in vitro. SPN also prevented hypoxia-induced retinal neovascularization in a rat model of oxygen-induced retinopathy in vivo. These results indicate that SPN ameliorates retinal neovascularization through inhibition of HIF-1α/VEGF signaling pathway. Therefore, SPN has the potential to be developed as an agent for the prevention and treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Jianming Wu
- Laboratory of Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu 610036, Sichuan, China.
- Post-Doctoral Mobile Station, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xiao Ke
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu 610036, Sichuan, China.
| | - Wei Fu
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu 610036, Sichuan, China.
| | - Xiaoping Gao
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu 610036, Sichuan, China.
| | - Hongcheng Zhang
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu 610036, Sichuan, China.
| | - Wei Wang
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu 610036, Sichuan, China.
| | - Na Ma
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu 610036, Sichuan, China.
| | - Manxi Zhao
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu 610036, Sichuan, China.
| | - Xiaofeng Hao
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu 610036, Sichuan, China.
| | - Zhirong Zhang
- Post-Doctoral Mobile Station, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
8
|
Wu J, Ke X, Wang W, Zhang H, Ma N, Fu W, Zhao M, Gao X, Hao X, Zhang Z. Aloe-emodin suppresses hypoxia-induced retinal angiogenesis via inhibition of HIF-1α/VEGF pathway. Int J Biol Sci 2016; 12:1363-1371. [PMID: 27877088 PMCID: PMC5118782 DOI: 10.7150/ijbs.16334] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/22/2016] [Indexed: 11/05/2022] Open
Abstract
Background: Aloe-emodin (AE) has been reported to possess the antiangiogenic effect on laser induced choroidal neovascularization. AE inhibits the vessel formation in the zebrafish embryos. However, it is still unclear whether AE can alleviate neovascularization. Here, we investigated the inhibitory effect of AE on the hypoxia-induced retinal neovascularization and the possible mechanisms. Methods: We established a vascular endothelial growth factor (VEGF) secretion model under chemical induced hypoxia by exposure of 150 µM CoCl2 to the ARPE-19 cells, then treated the cells with different concentrations of AE (0.2, 1.0 and 5.0 µg/mL) or a special hypoxia-inducible factor 1α (HIF-1α) inhibitor [3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole, YC-1, 1.0 µg/mL]. The cellular supernatants were collected 48 h later to measure the VEGFA concentrations by human VEGFA enzyme-linked immunosorbent assay (ELISA) kits, the mRNA expressions of VEGFA, HIF-1α and prolyl hydroxylase-2 (PHD-2) by quantitative reverse transcription-PCR (qRT-PCR) and the protein expressions of HIF-1α and PHD-2 by Western blots. For in vivo study, the rat pups with oxygen-induced retinopathy were treated with Conbercept ophthalmic injection (1.0 mg/kg) or AE (5.0 and 10.0 mg/kg) for five days, then the retinal avascular areas were assessed via visualization of the retinal vasculature with ADPase and hematoxylin & eosin (H&E) stains. Results: AE inhibits the VEGFA secretion of ARPE-19 cells under hypoxia condition, decreases the mRNA expressions of VEGFA and PHD-2 and the protein expressions of VEGFA, HIF-1α and PHD-2 in vitro and prevents hypoxia-induced retinal neovascularization in vivo.Conclusions: AE ameliorates retinal neovascularization throuth inhibition of the HIF-1α/VEGF signaling pathway. AE may be developed as a potential drug for the prevention and treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Jianming Wu
- Laboratory of Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China;; Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu, Sichuan 610036, China;; Post-Doctoral Mobile Station, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiao Ke
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu, Sichuan 610036, China
| | - Wei Wang
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu, Sichuan 610036, China
| | - Hongcheng Zhang
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu, Sichuan 610036, China
| | - Na Ma
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu, Sichuan 610036, China
| | - Wei Fu
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu, Sichuan 610036, China
| | - Manxi Zhao
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu, Sichuan 610036, China
| | - Xiaoping Gao
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu, Sichuan 610036, China
| | - Xiaofeng Hao
- Post-Doctoral Research Station, KangHong Pharmaceutical Group, Chengdu, Sichuan 610036, China
| | - Zhirong Zhang
- Post-Doctoral Mobile Station, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
9
|
Wu J, Ke X, Ma N, Wang W, Fu W, Zhang H, Zhao M, Gao X, Hao X, Zhang Z. Formononetin, an active compound of Astragalus membranaceus (Fisch) Bunge, inhibits hypoxia-induced retinal neovascularization via the HIF-1α/VEGF signaling pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3071-3081. [PMID: 27729769 PMCID: PMC5042190 DOI: 10.2147/dddt.s114022] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND It has been reported that formononetin (FMN), one of the main ingredients from famous traditional Chinese medicine "Huang-qi" (Astragalus membranaceus [Fisch] Bunge) for Qi-tonifying, exhibits the effects of immunomodulation and tumor growth inhibition via antiangiogenesis. Furthermore, A. membranaceus may alleviate the retinal neovascularization (NV) of diabetic retinopathy. However, the information of FMN on retinal NV is limited so far. In the present study, we investigated the effects of FMN on the hypoxia-induced retinal NV and the possible related mechanisms. MATERIALS AND METHODS The VEGF secretion model of acute retinal pigment epithelial-19 (ARPE-19) cells under chemical hypoxia was established by the exposure of cells to 150 μM CoCl2 and then cells were treated with 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1, a potent HIF-1α inhibitor, 1.0 μg/mL) or different concentrations of FMN (0.2 μg/mL, 1.0 μg/mL, and 5.0 μg/mL). The supernatants of cells were collected 48 hours later to measure the VEGF concentrations, following the manufacturer's instruction. The mRNA expressions of VEGF, HIF-1α, PHD-2, and β-actin were analyzed by quantitative reverse transcription polymerase chain reaction, and the protein expressions of HIF-1α and PHD-2 were determined by Western blot analysis. Furthermore, the rats with retinopathy were treated by intraperitoneal administration of conbercept injection (1.0 mg/kg) or FMN (5.0 mg/kg and 10.0 mg/kg) in an 80% oxygen atmosphere. The retinal avascular areas were assessed through visualization of the retinal vasculature by adenosine diphosphatase staining and hematoxylin and eosin staining. RESULTS FMN can indeed inhibit the VEGF secretion of ARPE-19 cells under hypoxia, downregulate the mRNA expression of VEGFA and PHD-2, and decrease the protein expression of VEGF, HIF-1α, and PHD-2 in vitro. Furthermore, FMN can prevent hypoxia-induced retinal NV in vivo. CONCLUSION FMN can ameliorate retinal NV via the HIF-1α/VEGF signaling pathway, and it may become a potential drug for the prevention and treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Jianming Wu
- Laboratory of Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou; Post-Doctoral Research Station, Kanghong Pharmaceutical Group; Post-Doctoral Mobile Station, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xiao Ke
- Post-Doctoral Research Station, Kanghong Pharmaceutical Group
| | - Na Ma
- Post-Doctoral Research Station, Kanghong Pharmaceutical Group
| | - Wei Wang
- Post-Doctoral Research Station, Kanghong Pharmaceutical Group
| | - Wei Fu
- Post-Doctoral Research Station, Kanghong Pharmaceutical Group
| | - Hongcheng Zhang
- Post-Doctoral Research Station, Kanghong Pharmaceutical Group
| | - Manxi Zhao
- Post-Doctoral Research Station, Kanghong Pharmaceutical Group
| | - Xiaoping Gao
- Post-Doctoral Research Station, Kanghong Pharmaceutical Group
| | - Xiaofeng Hao
- Post-Doctoral Research Station, Kanghong Pharmaceutical Group
| | - Zhirong Zhang
- Post-Doctoral Mobile Station, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
10
|
Altiok EI, Browne S, Khuc E, Moran EP, Qiu F, Zhou K, Santiago-Ortiz JL, Ma JX, Chan MF, Healy KE. sFlt Multivalent Conjugates Inhibit Angiogenesis and Improve Half-Life In Vivo. PLoS One 2016; 11:e0155990. [PMID: 27257918 PMCID: PMC4892585 DOI: 10.1371/journal.pone.0155990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/06/2016] [Indexed: 11/30/2022] Open
Abstract
Current anti-VEGF drugs for patients with diabetic retinopathy suffer from short residence time in the vitreous of the eye. In order to maintain biologically effective doses of drug for inhibiting retinal neovascularization, patients are required to receive regular monthly injections of drug, which often results in low patient compliance and progression of the disease. To improve the intravitreal residence time of anti-VEGF drugs, we have synthesized multivalent bioconjugates of an anti-VEGF protein, soluble fms-like tyrosine kinase-1 (sFlt) that is covalently grafted to chains of hyaluronic acid (HyA), conjugates that are termed mvsFlt. Using a mouse corneal angiogenesis assay, we demonstrate that covalent conjugation to HyA chains does not decrease the bioactivity of sFlt and that mvsFlt is equivalent to sFlt at inhibiting corneal angiogenesis. In a rat vitreous model, we observed that mvsFlt had significantly increased intravitreal residence time compared to the unconjugated sFlt after 2 days. The calculated intravitreal half-lives for sFlt and mvsFlt were 3.3 and 35 hours, respectively. Furthermore, we show that mvsFlt is more effective than the unconjugated form at inhibiting retinal neovascularization in an oxygen-induced retinopathy model, an effect that is most likely due to the longer half-life of mvsFlt in the vitreous. Taken together, our results indicate that conjugation of sFlt to HyA does not affect its affinity for VEGF and this conjugation significantly improves drug half-life. These in vivo results suggest that our strategy of multivalent conjugation could substantially improve upon drug half-life, and thus the efficacy of currently available drugs that are used in diseases such as diabetic retinopathy, thereby improving patient quality of life.
Collapse
Affiliation(s)
- Eda I. Altiok
- Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Shane Browne
- Department of Bioengineering, University of California, Berkeley, California, United States of America
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Emily Khuc
- Department of Ophthalmology, University of California at San Francisco, San Francisco, California, United States of America
| | - Elizabeth P. Moran
- Department of Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Fangfang Qiu
- Department of Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Kelu Zhou
- Department of Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Jorge L. Santiago-Ortiz
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States of America
| | - Jian-xing Ma
- Department of Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Matilda F. Chan
- Department of Ophthalmology, University of California at San Francisco, San Francisco, California, United States of America
| | - Kevin E. Healy
- Department of Bioengineering, University of California, Berkeley, California, United States of America
- Department of Materials Science and Engineering, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Gupta P, Arumugam M, Azad RV, Saxena R, Ghose S, Biswas NR, Velpandian T. Screening of antiangiogenic potential of twenty two marine invertebrate extracts of phylum Mollusca from South East Coast of India. Asian Pac J Trop Biomed 2014; 4:S129-38. [PMID: 25183067 DOI: 10.12980/apjtb.4.2014c701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE To evaluate the antiangiogenic potential of twenty two marine invertebrate species of Phylum Mollusca from south east coast of India. METHODS Live specimens of molluscan species were collected and their methanolic extracts were evaluated for preliminary antiangiogenic activity using the in ovo chick chorio-allantoic membrane assay. The extracts were further evaluated for in vivo antiangiogenic activity using chemical cautery induced corneal neovascularization assay in rats and oxygen induced retinopathy assay in rat pups. RESULTS In the chick chorio-allantoic membrane assay, four methanolic extracts of marine molluscan species viz. Meretrix meretrix, Meretrix casta, Telescopium telescopium and Bursa crumena methanolic extracts exhibited noticeable antiangiogenic activity at the tested concentration of 200 µg whereby they significantly inhibited the VEGF induced proliferation of new blood vessels. Among these four extracts, the methanolic extract of Meretrix casta exhibited relatively higher degree of antiangiogenic activity with an inhibitiory percentage (64.63%) of the VEGF induced neovascularization followed by the methanolic extracts of Telescopium telescopium (62.02%), Bursa crumena (60.48%) and Meretrix meretrix (47.01%). These four methanolic extracts were further evaluated for in vivo antiangiogenic activity whereby the methanolic extract of Telescopium telescopium exhibited most noticeable inhibition (42.58%) of the corneal neovascularization in rats in comparison to the sham treated group, and also exhibited most noticeable inhibition (31.31%) of the oxygen induced retinal neovascularization in rat pups in comparison to the hyperoxia group that was observed for considerable retinal neovascularization. CONCLUSIONS The significant antiangiogenic activity evinced by the extract of Telescopium telescopium merits further investigation for ocular neovascular diseases.
Collapse
Affiliation(s)
- Pankaj Gupta
- Department of Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Muthuvel Arumugam
- Centre for Advanced Study in Marine Biology, Annamalai University, Parangipettai, Tamil Nadu, India
| | - Raj Vardhan Azad
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Rohit Saxena
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Supriyo Ghose
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Nihar Ranjan Biswas
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Thirumurthy Velpandian
- Department of Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
12
|
Chen Y, Hu Y, Lin M, Jenkins AJ, Keech AC, Mott R, Lyons TJ, Ma JX. Therapeutic effects of PPARα agonists on diabetic retinopathy in type 1 diabetes models. Diabetes 2013; 62:261-72. [PMID: 23043158 PMCID: PMC3526044 DOI: 10.2337/db11-0413] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Retinal vascular leakage, inflammation, and neovascularization (NV) are features of diabetic retinopathy (DR). Fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, has shown robust protective effects against DR in type 2 diabetic patients, but its effects on DR in type 1 diabetes have not been reported. This study evaluated the efficacy of fenofibrate on DR in type 1 diabetes models and determined if the effect is PPARα dependent. Oral administration of fenofibrate significantly ameliorated retinal vascular leakage and leukostasis in streptozotocin-induced diabetic rats and in Akita mice. Favorable effects on DR were also achieved by intravitreal injection of fenofibrate or another specific PPARα agonist. Fenofibrate also ameliorated retinal NV in the oxygen-induced retinopathy (OIR) model and inhibited tube formation and migration in cultured endothelial cells. Fenofibrate also attenuated overexpression of intercellular adhesion molecule-1, monocyte chemoattractant protein-1, and vascular endothelial growth factor (VEGF) and blocked activation of hypoxia-inducible factor-1 and nuclear factor-κB in the retinas of OIR and diabetic models. Fenofibrate's beneficial effects were blocked by a specific PPARα antagonist. Furthermore, Pparα knockout abolished the fenofibrate-induced downregulation of VEGF and reduction of retinal vascular leakage in DR models. These results demonstrate therapeutic effects of fenofibrate on DR in type 1 diabetes and support the existence of the drug target in ocular tissues and via a PPARα-dependent mechanism.
Collapse
Affiliation(s)
- Ying Chen
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yang Hu
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Mingkai Lin
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Alicia J. Jenkins
- Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Medicine, The University of Melbourne, Melbourne, Australia
| | - Anthony C. Keech
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - Robert Mott
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Timothy J. Lyons
- Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jian-xing Ma
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Corresponding author: Jian-xing Ma,
| |
Collapse
|
13
|
Cai X, Sezate SA, McGinnis JF. Neovascularization: ocular diseases, animal models and therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:245-52. [PMID: 22183339 DOI: 10.1007/978-1-4614-0631-0_32] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Xue Cai
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
14
|
Saito Y, Hasebe-Takenaka Y, Ueda T, Nakanishi-Ueda T, Kosuge S, Aburada M, Shimada T, Ikeya Y, Onda H, Ogura H, Taguchi Y, Yasuhara H, Koide R. Effects of green tea fractions on oxygen-induced retinal neovascularization in the neonatal rat. J Clin Biochem Nutr 2011; 41:43-9. [PMID: 18392105 PMCID: PMC2274993 DOI: 10.3164/jcbn.2007006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 12/01/2006] [Indexed: 11/22/2022] Open
Abstract
This study aimed to investigate the preventive effects of green tea fractions (GTFs) on rat model of oxygen-induced retinopathy (OIR). Neonatal Sprague-Dawley rats were exposed to daily cycles of 80% oxygen (20.5 h), ambient air (0.5 h), and progressive return to 80% oxygen (3 h) until postnatal day 12 (P12), then the rats were placed in ambient air until P18. The green tea was fractionated by DM-A50, DM-W, M-B, and M-W. The rats were treated once daily from P6 to P17 by gastric gavage of GTFs (0.05 or 0.01 g/ml) or distilled water (DW) at 50 µl/10 g body weight. On P18, the rats were sacrificed and the retinal samples were collected. The retinal neovascularization (NV) was scored and avascular areas (AVAs) were measured as a % of total retinal area (%AVAs) in ADPase stained retinas. The NV scores in 0.01 g/ml M-W were significantly lower than those in DW. The %AVAs in 0.05 g/ml DM-A50 and in 0.05 g/ml and 0.01 g/ml M-W were significantly lower than those in DW. There were less catechins, and less caffeine in M-W fraction compared with other GTFs, suggesting components of green tea except for catechins and caffeine might suppress the neovascularization in rat model of OIR.
Collapse
Affiliation(s)
- Yuta Saito
- Department of Ophthalmology, School of Medicine, Showa University, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Chen Y, Hu Y, Zhou T, Zhou KK, Mott R, Wu M, Boulton M, Lyons TJ, Gao G, Ma JX. Activation of the Wnt pathway plays a pathogenic role in diabetic retinopathy in humans and animal models. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2676-85. [PMID: 19893025 DOI: 10.2353/ajpath.2009.080945] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although Wnt signaling is known to mediate multiple biological and pathological processes, its association with diabetic retinopathy (DR) has not been established. Here we show that retinal levels and nuclear translocation of beta-catenin, a key effector in the canonical Wnt pathway, were increased in humans with DR and in three DR models. Retinal levels of low-density lipoprotein receptor-related proteins 5 and 6, coreceptors of Wnts, were also elevated in the DR models. The high glucose-induced activation of beta-catenin was attenuated by aminoguanidine, suggesting that oxidative stress is a direct cause for the Wnt pathway activation in diabetes. Indeed, Dickkopf homolog 1, a specific inhibitor of the Wnt pathway, ameliorated retinal inflammation, vascular leakage, and retinal neovascularization in the DR models. Dickkopf homolog 1 also blocked the generation of reactive oxygen species induced by high glucose, suggesting that Wnt signaling contributes to the oxidative stress in diabetes. These observations indicate that the Wnt pathway plays a pathogenic role in DR and represents a novel therapeutic target.
Collapse
Affiliation(s)
- Ying Chen
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cringle SJ, Yu DY. Oxygen supply and consumption in the retina: implications for studies of retinopathy of prematurity. Doc Ophthalmol 2009; 120:99-109. [PMID: 19830466 DOI: 10.1007/s10633-009-9197-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 09/04/2009] [Indexed: 01/12/2023]
Abstract
A disrupted oxygen environment in the retina of severely premature neonates is thought to be a key factor in the development of retinopathy of prematurity (ROP). This review describes our understanding of intraretinal oxygen distribution and consumption in a range of animal models, including species with naturally avascular retinas and models of induced occlusion of the retinal vasculature. The influence of graded systemic hyperoxia on retinal oxygenation is also discussed along with modulation of retinal oxygen metabolism. The differences in retinal oxygenation between developing and mature retinas are also described. Comparisons are made with studies in the monkey retina in order to assess possible similarities in behaviour between rat and human retinas. Pathogenesis mechanism and possible intervention strategies during the diseased processes in ROP are proposed based on our current knowledge.
Collapse
Affiliation(s)
- Stephen J Cringle
- Centre for Ophthalmology and Visual Science and the ARC Centre of Excellence in Vision Science, The University of Western Australia, Perth, WA, Australia
| | | |
Collapse
|
18
|
Abstract
Increasing interest in developing reliable and reproducible models to study angiogenesis has emerged due to recent advances in the treatment of eye disease with pathologic angiogenesis. This review provides a summary of the principal ocular animal models for angiogenesis. Models of anterior segment neovascularization include the corneal micropocket assay, used to study the influence of specific molecules/proteins in angiogenesis, and corneal chemical and suture induced injury, which mimic more closely the complex nature of the human disease. Angiogenesis models of the posterior segment include the well-known laser-induced injury of the choroid/Bruch's membrane, as well as the oxygen induced retinopathy and models of injections of pro-angiogenic/inflammatory molecules. In addition, knockout or knock-in transgenic mice provide powerful tools in studying the role of specific proteins in angiogenesis.
Collapse
Affiliation(s)
- Sandra R Montezuma
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA. sandra
| | | | | |
Collapse
|
19
|
The effect of oxygen and light on the structure and function of the neonatal rat retina. Doc Ophthalmol 2008; 118:37-54. [DOI: 10.1007/s10633-008-9128-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
|
20
|
Incidence of severe retinopathy of prematurity before and after a modest reduction in target oxygen saturation levels. J AAPOS 2007; 11:170-4. [PMID: 17416327 PMCID: PMC2705933 DOI: 10.1016/j.jaapos.2006.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2006] [Revised: 08/08/2006] [Accepted: 08/19/2006] [Indexed: 11/26/2022]
Abstract
BACKGROUND Previous studies suggest that reducing target oxygen saturation levels to 85-93% decreases the incidence of severe retinopathy of prematurity (ROP). Our aim was to determine if a more modest reduction in target oxygen saturation levels also reduces ROP incidence. METHODS One neonatal intensive care unit instituted new oxygen saturation guidelines that changed target levels from the upper 90s to 90-96%. We conducted a retrospective cohort study to determine the proportion of eyes that progressed to (1) threshold or type-1 ROP and (2) stage 3. These proportions were compared between two groups of all eligible infants born up to 10 months before (higher oxygen group, n = 46) and up to 16 months after (lower oxygen group, n = 59) the policy change. Binomial regression was used to calculate relative risks adjusted for birth weight, gestational age, apnea, days of mechanical ventilation, and length of hospital stay. RESULTS Sixteen of 90 eyes (18%) in the higher oxygen group developed threshold or type-1 ROP versus 16 of 118 eyes (14%) in the lower oxygen group (adjusted relative risk = 0.66, 95% CI = 0.29, 1.51). Twenty-two of 88 eyes (25%) in the higher oxygen group developed stage 3 ROP versus 26 of 118 eyes (22%) in the lower oxygen group (adjusted relative risk = 0.76, 95% CI = 0.43, 1.37). CONCLUSIONS We observed a small but statistically insignificant reduction in the incidence of severe ROP after a modest reduction in target oxygen saturation levels to 90 to 96% in the first several weeks of life.
Collapse
|
21
|
Beauchamp MH, Sennlaub F, Speranza G, Gobeil F, Checchin D, Kermorvant-Duchemin E, Abran D, Hardy P, Lachapelle P, Varma DR, Chemtob S. Redox-dependent effects of nitric oxide on microvascular integrity in oxygen-induced retinopathy. Free Radic Biol Med 2004; 37:1885-94. [PMID: 15528047 DOI: 10.1016/j.freeradbiomed.2004.09.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 08/10/2004] [Accepted: 09/02/2004] [Indexed: 11/19/2022]
Abstract
Opposing effects have been ascribed to nitric oxide (NO) on retinal microvascular survival. We investigated whether changes in the redox state may contribute to explain apparent conflicting actions of NO in a model of oxygen-induced retinal vasoobliteration. Retinal microvascular obliteration was induced by exposing 7-day-old rat pups (P7) for 2 or 5 days to 80% O(2). The redox state of the retina was assessed by measuring reduced glutathione and oxidative and nitrosative products malondialdehyde and nitrotyrosine. The role of NO on vasoobliteration was evaluated by treating animals with nitric oxide synthase (NOS) inhibitors (N-nitro-l-arginine; L-NA) and by determining NOS isoform expression and activity; the contribution of nitrosative stress was also determined in animals treated with the degradation catalyst of peroxynitrite FeTPPS or with the superoxide dismutase mimetic CuDIPS. eNOS, but not nNOS or iNOS, expression and activity were increased throughout the exposure to hyperoxia. These changes were associated with an early (2 days hyperoxia) decrease in reduced glutathione and increases in malondialdehyde and nitrotyrosine. CuDIPS, FeTPPS, and L-NA treatments for these 2 days of hyperoxia nearly abolished the vasoobliteration. In contrast, during 5 days exposure to hyperoxia when the redox state rebalanced, L-NA treatment aggravated the vasoobliteration. Interestingly, VEGFR-2 expression was respectively increased by NOS inhibition after short-term (2 days) exposure to hyperoxia and decreased during the longer hyperoxia exposure. Data disclose that the dual effects of NO on newborn retinal microvascular integrity in response to hyperoxia in vivo depend on the redox state and seem mediated at least in part by VEGFR-2.
Collapse
Affiliation(s)
- Martin H Beauchamp
- Department of Pediatrics, Ophthalmology, and Pharmacology, Research Center of Hôpital Ste-Justine, Montréal, Québec H3T 1C5, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gao G, Li Y, Fant J, Crosson CE, Becerra SP, Ma JX. Difference in ischemic regulation of vascular endothelial growth factor and pigment epithelium--derived factor in brown norway and sprague dawley rats contributing to different susceptibilities to retinal neovascularization. Diabetes 2002; 51:1218-25. [PMID: 11916948 DOI: 10.2337/diabetes.51.4.1218] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present study compared susceptibilities of Sprague Dawley (SD) and Brown Norway (BN) rats with ischemia-induced retinal neovascularization. An exposure to constant hyperoxia followed by normoxia induced significant retinal neovascularization in BN rats but not in SD rats, as demonstrated by fluorescein retinal angiography, measurement of avascular area, and count of preretinal vascular cells. These results indicate a rat strain difference in susceptibility to retinal neovascularization. To understand the molecular basis responsible for the strain difference, we have measured the levels of pigment epithelium-derived factor (PEDF), an angiogenic inhibitor, and vascular endothelial growth factor (VEGF), a major angiogenic stimulator in the retina. The hyperoxia-treated BN rats showed a significant reduction in retinal PEDF, but they showed a substantial increase of VEGF at both the protein and RNA levels, resulting in an increased VEGF-to-PEDF ratio. Hyperoxia-treated SD rats showed changes in PEDF and VEGF levels that were less in magnitude and of shorter duration than in BN rats. In age-matched normal BN and SD rats, however, there was no detectable difference in the basal VEGF-to-PEDF ratio between the strains. These observations support the idea that different regulation of angiogenic inhibitors and stimulators under ischemia are responsible for the differences in susceptibility to ischemia-induced retinal neovascularization in SD and BN rats.
Collapse
Affiliation(s)
- Guoquan Gao
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina 29403, USA
| | | | | | | | | | | |
Collapse
|
23
|
Powers MR, Planck SR. Immunolocalization of transforming growth factor-alpha and its receptor in the normal and hyperoxia-exposed neonatal rat retina. Curr Eye Res 1997; 16:177-82. [PMID: 9088732 DOI: 10.1076/ceyr.16.3.177.15406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE Transforming growth factor-alpha (TGF-alpha) is a mitogenic polypeptide for a variety of different cells types including retinal neurons and glial cells. We have examined the temporal and spatial expression of TGF-alpha and its receptor in the normal and hyperoxia-exposed neonatal rat retina to determine if the expression is consistent with a role in retinal development and response to retinal injury. METHODS We have used immunohistochemistry to examine TGF-alpha and epidermal growth factor receptor (EGF-R) on postnatal days (1, 5, 10, 14, 18, and 25). To examine TGF-alpha and EGF-R expression after retinal injury we studied the retinas from rats which were exposed to 80% oxygen for 10 days and then recovered in room air. Immunolocalization of type IV collagen was performed to examine the retinal vasculature development after hyperoxia. RESULTS The pattern of TGF-alpha and EGF-R expression in the neural retina evolved from a diffuse pattern on postnatal day 1 to restricted sites on postnatal day 14. The TGF-alpha immunoreactivity was consistent with localization in Müller cells on postnatal day 14. Both TGF-alpha and EGF-R patterns were altered in the retinas from rats that had been exposed to hyperoxia and recovered in room air for 4 days. The type IV confirmed immunostaining confirmed vaso-obliteration in the deep layer of retinal vessels after hyperoxia. CONCLUSIONS Our findings of altered expression of TGF-alpha and EGF-R during retinal development suggests a biological function for this growth factor, possibly promoting retinal cell proliferation, differentiation, and survival. The altered immunolocalization of TGF-alpha and EGF-R in the hyperoxia-exposed retina suggest that TGF-alpha is likely involved in the retinal response to injury.
Collapse
Affiliation(s)
- M R Powers
- Department of Pediatrics, Oregon Health Sciences University, Portland 97201, USA
| | | |
Collapse
|
24
|
|
25
|
Torbati D, Wafapoor H, Peyman GA. Hyperbaric oxygen tolerance in newborn mammals--hypothesis on mechanisms and outcome. Free Radic Biol Med 1993; 14:695-703. [PMID: 8325541 DOI: 10.1016/0891-5849(93)90152-k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Newborn mammals, compared to adults, are extremely resistant to the CNS effects of hyperbaric oxygenation (HBO) induced by excessive generation of reactive oxygen species. This tolerance to HBO may be related to either physiological responses or the chemical characteristics of the immature brain, including a low cerebral blood flow and energy metabolism, and a low concentration of polyunsaturated fatty acids. In adult mammals the main protective mechanism against CNS oxygen toxicity, besides endogenous antioxidants, is a transient HBO-induced cerebral vasoconstriction. How cerebral vasculature reacts to HBO in the immature brain is not known. We present indirect evidence suggesting that HBO in newborn rats induces a persistent cerebral vasoconstriction concurrently with a severe and maintained reduction in ventilation. It is speculated that the outcome of these physiologic responses to hyperoxic exposures may be: (a) extension of tolerance to both CNS and pulmonary oxygen poisoning; (b) creation of a profound hypoxic-ischemic condition in vulnerable neural structures; and (c) impairment of the circulatory and ventilatory responses to hypoxic stimuli on return to air with consequent development of a secondary hypoxic-ischemic condition. These hypothetical pre- and post-HBO events may set the stage for the development of some delayed neurological disorders, including the retinopathy of prematurity and the retardation of brain development in fetuses or prematurely-born infants subjected to oxygen therapy.
Collapse
Affiliation(s)
- D Torbati
- Louisiana State University, Department of Physiology, LSU Medical Center, New Orleans 70112
| | | | | |
Collapse
|