1
|
Zhou H, Li J, Li H, Liu H, Wang X, Du X. Controlled construction of 2D hierarchical core-shell ZnO/MnO 2 nanosheets on Nitinol fiber with enhanced adsorption performance for selective solid-phase microextraction of trace polycyclic aromatic hydrocarbons in water samples. Anal Chim Acta 2024; 1298:342402. [PMID: 38462331 DOI: 10.1016/j.aca.2024.342402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/02/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) are an important class of potentially toxic persistent organic pollutants in environmental water. Their concentrations are usually too low to allow for direct determination with analytical instruments, and the preconcentration is required prior to instrumental analysis. Solid phase microextraction (SPME) is considered as a high-performance green sample preparation technique for volatile and non-volatile organic compounds due to its high enrichment factor. In fact, the nature of SPME coatings governs the adsorption performance. Therefore, more efforts have devoted to the controlled construction of novel long-life SPME fibers with enhanced adsorption performance and improved adsorption selectivity. RESULTS 2D hierarchical core-shell ZnO/MnO2 nanosheets (NSs) were constructed on a Nitinol (NiTi) fiber substrate by layer-by-layer assembly for enhanced and selective SPME of PAHs. Firstly, hexagonal ZnO NSs were electrodeposited on the NiTi substrate. Subsequently smaller secondary MnO2 NSs were uniformly grown on the surface of ZnO NSs by a facile hydrothermal oxidation process. ZnO NSs were well protected by the chemically stable MnO2 shell, making the coating highly durable and efficient for SPME application. Meanwhile, the ZnO/MnO2 NSs coating demonstrated superior adsorption performance for PAHs. After the optimization of SPME conditions, the proposed SPME-HPLC-UV method exhibited good analytical performance for preconcentrating and determining trace PAHs with wide linear ranges (0.03-200 μg L-1) and low LODs (0.005-0.112 μg L-1) as well as good repeatability (1.4%-6.9%) and fiber-to-fiber reproducibility (5.3%-7.1%). Moreover, the proposed method showed good precision and recovery in the preconcentration and determination of target PAHs in real water samples. SIGNIFICANCE As compared with representative commercially available fibers, the NiTi@ZnO/MnO2 NSs fiber showed enhanced adsorption efficiency and improved adsorption selectivity for PAHs. The constructed fiber can be used as an alternative to commercial fibers for the adsorption and preconcentration of target PAHs in the environmental water samples. Moreover, the preparation strategy is expected to provide new insights into the precisely controlled construction of the efficient and stable core-shell bimetallic oxide nanostructures on the superielastic NiTi-based fibers.
Collapse
Affiliation(s)
- Hua Zhou
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Jiayu Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Huirong Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Haixia Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Xuemei Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China; Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou, 730070, China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China; Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou, 730070, China.
| |
Collapse
|
2
|
Wang YN, Zhang YP, You WL, Qu L, Chen DL, Chen Y, Chen J. Modified stainless steel wires with superwettability for highly efficient in-tube solid-phase microextraction. J Chromatogr A 2023; 1697:463988. [PMID: 37071965 DOI: 10.1016/j.chroma.2023.463988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/20/2023]
Abstract
Construction of different surface wettability is meaningful for the interaction between the sorbent surface and target components. In the current study, four kinds of stainless-steel wires (SSWs) with different hydrophobic/hydrophilic property were prepared and used as the absorbents to enrich the target compounds with different polarity. Comparative extraction of six non-polar polycyclic aromatic hydrocarbons (PAHs) and six polar estrogens was carried out by in-tube solid phase microextraction (IT-SPME). The results showed that two SSWs with the superhydrophobic surfaces exhibited high extraction capacity to the non-polar PAHs with the superior enrichment factor (EF) in the range of 29-672 and 57-744, respectively. In contrast, the superhydrophilic SSWs demonstrated higher enrichment efficiency for the polar estrogens than other hydrophobic SSWs. On the basis of optimized conditions, a validated analysis method was established using six PAHs as model analytes for IT-SPME-HPLC. Acceptable linear ranges (0.5-10 μg L-1) and low detection limits (0.0056-0.32 μg L-1) were achieved using the superhydrophobic wire modified by perfluorooctyl trichlorosilane (FOTS). The relative recoveries spiked at 2, 5 and 10 μg L-1 in the lake water samples were in the range of 81.5%-113.7%. The relative standard deviation (RSD) of intraday (≤0.8%, n = 3) and interday (≤5.3%, n = 3) tests demonstrated the good extraction repeatability for the same extraction tube. Satisfactory repeatability for the preparation of extraction tubes (n = 3) was also obtained with the RSD values in the range of 3.6%-8.0%.
Collapse
Affiliation(s)
- Ya-Ning Wang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu-Ping Zhang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China; College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, China; College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453000, China.
| | - Wan-Li You
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, China
| | - LingBo Qu
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - De-Liang Chen
- Changde Zhengyang Biotechnology Co., Ltd., Changde, 415000, China
| | - Yuan Chen
- Changde Zhengyang Biotechnology Co., Ltd., Changde, 415000, China
| | - Jun Chen
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453000, China
| |
Collapse
|
3
|
Rahimi M, Bahar S. Preparation of a New Solid-Phase Microextraction Fiber Based on Molecularly Imprinted Polymers for Monitoring of Phenobarbital in Urine Samples. J Chromatogr Sci 2022; 61:87-95. [PMID: 35088078 DOI: 10.1093/chromsci/bmac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 12/31/2021] [Indexed: 01/11/2023]
Abstract
A simple solid-phase microextraction technique using molecularly imprinted polymers (MIP-SPME) was prepared to monitor phenobarbital in urine samples. In this technique, the fiber was prepared via insertion of the modified stainless-steel wire in the reaction solution including 3-aminopropyltriethoxysilane and tetraethyl orthosilicate in the presence of an acidic catalyst (acetic acid). The fabricated MIP-SPME fiber was utilized to selectively extract phenobarbital from urine samples and prepare it for detection through high-performance liquid chromatography with ultraviolet detection. The synthesized MIPs were characterized by several techniques such as Fourier-transform infrared spectroscopy, field emission scanning electron microscopy, and thermal gravimetric analysis. The effects of various influencing factors on the extraction yield of phenobarbital were considered and optimized. The conditions that yielded the maximum extraction efficiency were as follows: pH of 5, 25 min extraction time, 500 rpm stirring rate, 15 min desorption time and using methanol as elution solvent. Within the range of concentrations of 0.02 to 100 μg mL-1, the method had linear characteristics, with a suitable coefficient of determination (0.9983). We determined limits of detection and limits of quantification to be 9.88 and 32.9 ng mL-1, respectively. The repeatability and reproducibility of the prepared fibers were 4.6 and 6.5%, respectively.
Collapse
Affiliation(s)
- Marzieh Rahimi
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Soleiman Bahar
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
4
|
Zhang Y, Wang N, Lu Z, Chen N, Cui C, Chen X. Smart Titanium Wire Used for the Evaluation of Hydrophobic/Hydrophilic Interaction by In-Tube Solid Phase Microextraction. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072353. [PMID: 35408750 PMCID: PMC9000888 DOI: 10.3390/molecules27072353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
Abstract
Evaluation of the hydrophobic/hydrophilic interaction individually between the sorbent and target compounds in sample pretreatment is a big challenge. Herein, a smart titanium substrate with switchable surface wettability was fabricated and selected as the sorbent for the solution. The titanium wires and meshes were fabricated by simple hydrothermal etching and chemical modification so as to construct the superhydrophilic and superhydrophobic surfaces. The micro/nano hierarchical structures of the formed TiO2 nanoparticles in situ on the surface of Ti substrates exhibited the switchable surface wettability. After UV irradiation for about 15.5 h, the superhydrophobic substrates became superhydrophilic. The morphologies and element composition of the wires were observed by SEM, EDS, and XRD, and their surface wettabilities were measured using the Ti mesh by contact angle goniometer. The pristine hydrophilic wire, the resulting superhydrophilic wire, superhydrophobic wire, and the UV-irradiated superhydrophilic wire were filled into a stainless tube as the sorbent instead of the sample loop of a six-port valve for on-line in-tube solid-phase microextraction. When employed in conjunction with HPLC, four kinds of wires were comparatively applied to extract six estrogens in water samples. The optimal conditions for the preconcentration and separation of target compounds were obtained with a sample volume of 60 mL, an injection rate of 2 mL/min, a desorption time of 2 min, and a mobile phase of acetonile/water (47/53, v/v). The results showed that both the superhydrophilic wire and UV-irradiated wire had the highest extraction efficiency for the polar compounds of estrogens with the enrichment factors in the range of 20-177, while the superhydrophobic wire exhibited the highest extraction efficiency for the non-polar compounds of five polycyclic aromatic hydrocarbons (PAHs). They demonstrated that extraction efficiency was mainly dependent on the surface wettability of the sorbent and the polarity of the target compounds, which was in accordance with the molecular theory of like dissolves like.
Collapse
Affiliation(s)
- Yuping Zhang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, China
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China; (N.W.); (Z.L.); (N.C.); (C.C.); (X.C.)
- Correspondence: or
| | - Ning Wang
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China; (N.W.); (Z.L.); (N.C.); (C.C.); (X.C.)
| | - Zhenyu Lu
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China; (N.W.); (Z.L.); (N.C.); (C.C.); (X.C.)
| | - Na Chen
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China; (N.W.); (Z.L.); (N.C.); (C.C.); (X.C.)
| | - Chengxing Cui
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China; (N.W.); (Z.L.); (N.C.); (C.C.); (X.C.)
| | - Xinxin Chen
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China; (N.W.); (Z.L.); (N.C.); (C.C.); (X.C.)
| |
Collapse
|
5
|
Zhang YP, Luan CC, Lu ZY, Chen N, Zhang YJ, Cui CX. Brass wires with different surface wettability used for in-tube solid-phase microextraction. J Chromatogr A 2022; 1670:462948. [DOI: 10.1016/j.chroma.2022.462948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
|
6
|
Tabibpour M, Yamini Y, Ahmadi SH, Esrafili A, Salamat Q. Carbon fibers modified with polypyrrole for headspace solid phase microextraction of trace amounts of 2-pentyl furan from breath samples. J Chromatogr A 2020; 1609:460497. [DOI: 10.1016/j.chroma.2019.460497] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/31/2022]
|
7
|
Timofeeva I, Alikina M, Osmolowsky M, Osmolovskaya O, Bulatov A. Magnetic headspace adsorptive microextraction using Fe 3O 4@Cr(OH) 3 nanoparticles for effective determination of volatile phenols. NEW J CHEM 2020. [DOI: 10.1039/d0nj00854k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Simple and available procedure for the determination of volatile phenols in food samples based on magnetic headspace adsorptive microextraction using Fe3O4@Cr(OH)3 nanoparticles followed by HPLC with fluorescence detection was developed in this work.
Collapse
Affiliation(s)
- Irina Timofeeva
- Department of Analytical Chemistry
- Institute of Chemistry
- Saint-Petersburg University
- St. Petersburg State University
- SPbSU
| | - Mariya Alikina
- Department of Analytical Chemistry
- Institute of Chemistry
- Saint-Petersburg University
- St. Petersburg State University
- SPbSU
| | - Mikhail Osmolowsky
- Department of Analytical Chemistry
- Institute of Chemistry
- Saint-Petersburg University
- St. Petersburg State University
- SPbSU
| | - Olga Osmolovskaya
- Department of Analytical Chemistry
- Institute of Chemistry
- Saint-Petersburg University
- St. Petersburg State University
- SPbSU
| | - Andrey Bulatov
- Department of Analytical Chemistry
- Institute of Chemistry
- Saint-Petersburg University
- St. Petersburg State University
- SPbSU
| |
Collapse
|
8
|
Pelit L, Pelit F, Ertaş H, Ertaş FN. Electrochemically Fabricated Solid Phase Microextraction Fibers and Their Applications in Food, Environmental and Clinical Analysis. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411015666190314155440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background:Designing an analytical methodology for complicated matrices, such as biological and environmental samples, is difficult since the sample preparation procedure is the most demanding step affecting the whole analytical process. Nowadays, this step has become more challenging by the legislations and environmental concerns since it is a prerequisite to eliminate or minimize the use of hazardous substances in traditional procedures by replacing with green techniques suitable for the sample matrix.Methods:In addition to the matrix, the nature of the analyte also influence the ease of creating green analytical techniques. Recent developments in the chemical analysis provide us new methodologies introducing microextraction techniques and among them, solid phase microextraction (SPME) has emerged as a simple, fast, low cost, reliable and portable sample preparation technique that minimizes solvent consumption.Results:The use of home-made fibers is popular in the last two decades since the selectivity can be tuned by changing the surface characteristics through chemical and electrochemical modifications. Latter technique is preferred since the electroactive polymers can be coated onto the fiber under controlled electrochemical conditions and the film thicknesses can be adjusted by simply changing the deposition parameters. Thermal resistance and mechanical strength can be readily increased by incorporating different dopant ions into the polymeric structure and selectivity can be tuned by inserting functional groups and nanostructures. A vast number of analytes with wide range of polarities extracted by this means can be determined with a suitable chromatographic detector coupled to the system. Therefore, the main task is to improve the physicochemical properties of the fiber along with the extraction efficiency and selectivity towards the various analytes by adjusting the electrochemical preparation conditions.Conclusion:This review covers the fine tuning conditions practiced in electrochemical preparation of SPME fibers and in-tube systems and their applications in environmental, food and clinical analysis.
Collapse
Affiliation(s)
- Levent Pelit
- Department of Chemistry, Science Faculty, Ege University, Bornova, 35 100, İzmir, Turkey
| | - Füsun Pelit
- Department of Chemistry, Science Faculty, Ege University, Bornova, 35 100, İzmir, Turkey
| | - Hasan Ertaş
- Department of Chemistry, Science Faculty, Ege University, Bornova, 35 100, İzmir, Turkey
| | - Fatma Nil Ertaş
- Department of Chemistry, Science Faculty, Ege University, Bornova, 35 100, İzmir, Turkey
| |
Collapse
|
9
|
Rahimi M, Bahar S, Heydari R, Amininasab SM. Determination of quercetin using a molecularly imprinted polymer as solid-phase microextraction sorbent and high-performance liquid chromatography. Microchem J 2019. [DOI: 10.1016/j.microc.2019.05.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Corn-like stationary phase for solid phase microextraction prepared by electro-assisted deposition of sol-gel/silica nanoparticles composite. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Hu X, Wang C, Luo R, Liu C, Qi J, Sun X, Shen J, Han W, Wang L, Li J. Double -shelled hollow ZnO/carbon nanocubes as an efficient solid-phase microextraction coating for the extraction of broad-spectrum pollutants. NANOSCALE 2019; 11:2805-2811. [PMID: 30675891 DOI: 10.1039/c8nr09180c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Efficient extraction of pollutants with different chemical properties from environmental samples has attracted great attention in the development of analytical chemistry. However, it is still a challenge to develop an appropriate and sensitive adsorbent for determining broad-spectrum analytes. Herein, zeolitic imidazole framework-8 (ZIF-8)-derived double-shelled hollow zinc oxide/carbon (ZnO/C) nanocubes were reported as a novel coating for solid-phase microextraction (SPME). The nanocubes with a unique structure and composition were obtained by controlled etching of ZIF-8 with tannic acid (TA) followed by pyrolysis. When a ZnO/C nanocube-coated fiber (ZnO/C-F) was used to extract the complex environmental samples containing both nonpolar (benzene compounds (BTEX)) and polar (chlorophenols (CPs)) pollutants, excellent extraction performance was achieved; we obtained low detection limits (0.14-0.56 ng L-1 for BTEX and 1.10-2.84 ng L-1 for CPs), good repeatability (2.2-5.9% for six replicated extractions) and excellent reproducibility (0.61-7.8%, fiber to fiber). The broad-spectrum SPME performance was ascribed to the synergistic effect between the composition and structure of ZnO/C nanocubes. Compositionally, the uniform dispersion of ZnO and carbon framework could provide abundant adsorption active sites, where Zn-OHs bound CPs by hydrogen bonding and carbon absorbed BTEX through π-π stacking interaction and hydrophobic interaction. Structurally, the double-shelled hollow morphology of the nanocubes was favorable for the sensitive extraction. Finally, the established ZnO/C-F-based headspace-SPME method was used for the preconcentration and determination of abundant analytes from real water samples. These findings open the door for the practical use of double-shelled hollow multicompositional inorganic materials.
Collapse
Affiliation(s)
- Xingru Hu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang H, Du J, Zhen Q, Zhang R, Wang X, Du X. Selective solid-phase microextraction of ultraviolet filters in environmental water with oriented ZnO nanosheets coated nickel-titanium alloy fibers followed by high performance liquid chromatography with UV detection. Talanta 2019; 191:193-201. [DOI: 10.1016/j.talanta.2018.08.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/06/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022]
|
13
|
Du J, Wang H, Zhang R, Wang X, Du X, Lu X. Oriented ZnO nanoflakes on nickel-titanium alloy fibers for solid-phase microextraction of polychlorinated biphenyls and polycyclic aromatic hydrocarbons. Mikrochim Acta 2018; 185:441. [PMID: 30173394 DOI: 10.1007/s00604-018-2971-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/23/2018] [Indexed: 11/28/2022]
Abstract
ZnO nanoflakes (ZnONFs) were electrochemically grown on a nickel-titanium alloy (NiTi) wire for use in solid-phase microextraction. Prior to the growth of ZnONFs, the NiTi wire was hydrothermally treated for in-situ growth of TiO2/NiO nanoflakes as a seeding base. The applied potential was used to control the dimensions of vertically oriented hexagonal ZnONFs. After annealing at 600 °C, the resulting fiber display fairly selective affinity for polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons. The fibers were applied to the preconcentration of PCBs which then were quantified by HPLC with UV detection. Compared to commercial polydimethylsiloxane coatings, the new coating displays high extraction capability, rapid extraction kinetics and superior cycling stability. This is assumed to be due to its high surface-to-volume ratio, double-sided open access structure, and enhanced structural stability. The assay excels by (a) a wide analytical range (0.10 to 200 μg L-1 of PCBs), (b) low limits of detection (20-17 ng L-1), and (c) low standard deviations for the single fiber repeatability (<9.8%) and for the fiber-to-fiber reproducibility (<7.5%). Satisfactory accuracy and precision were achieved when PCBs were determined by this method in spiked rain water, river water and wastewater samples. Graphical abstract ZnO nanoflakes were fabricated on a superelastic nickel-titanium alloy wire in desired orientation with enhanced extraction capability and good extraction selectivity. The fabricated fiber was suitable for the determination of PCBs in environmental water samples.
Collapse
Affiliation(s)
- Jiajian Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Huiju Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Rong Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Xuemei Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.,Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou, 730070, China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China. .,Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou, 730070, China.
| | - Xiaoquan Lu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.,Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou, 730070, China
| |
Collapse
|
14
|
Electrospun Polyethylene Terephthalate/Graphene Nanocomposite as a New Solid-Phase Microextraction Fiber Coating for Enhanced Determination of Organochlorine Compounds. Chromatographia 2018. [DOI: 10.1007/s10337-018-3583-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Wang F, Wang Z, Wang Z, Zhang R, Du J, Du X. Facile in situ fabrication of oriented titania submicrorods embedded into a superelastic nickel–titanium alloy fiber substrate and their application in solid-phase microextraction. NEW J CHEM 2018. [DOI: 10.1039/c8nj02234h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel NiTi@TiO2SR fiber was fabricated on a NiTi fiber substrate after annealing for the determination of PAHs in water.
Collapse
Affiliation(s)
- Feifei Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University
- Lanzhou 730070
- China
| | - Zhuo Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University
- Lanzhou 730070
- China
| | - Ziyi Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University
- Lanzhou 730070
- China
| | - Rong Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University
- Lanzhou 730070
- China
| | - Junliang Du
- College of Chemistry and Chemical Engineering, Northwest Normal University
- Lanzhou 730070
- China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University
- Lanzhou 730070
- China
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu
- Lanzhou 730070
| |
Collapse
|
16
|
Vasiljevic T, Gómez-Ríos GA, Pawliszyn J. Single-Use Poly(etheretherketone) Solid-Phase Microextraction–Transmission Mode Devices for Rapid Screening and Quantitation of Drugs of Abuse in Oral Fluid and Urine via Direct Analysis in Real-Time Tandem Mass Spectrometry. Anal Chem 2017; 90:952-960. [DOI: 10.1021/acs.analchem.7b04005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Tijana Vasiljevic
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
17
|
Roostaie A, Rastegar S, Najarzadegan H, Ehteshami S. Electrospun decyl-3-methylimidazolium mono bromate/polyamide nanofibers as solid-phase microextraction coating. J Chromatogr A 2017; 1516:35-41. [PMID: 28822571 DOI: 10.1016/j.chroma.2017.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
Abstract
In the current study, electrospun-based ionic liquid (IL) doped polyamide (PA) nanofibers were prepared and used as the coating material of solid phase microextration device in the fiber geometry. Addition of IL, decyl-3-methylimidazolium mono bromate, increased the conductivity of the PA solution facilitating the electrospining process. The scanning electron microscopy images of decyl-3-methylimidazolium mono bromated/polyamide nanofibers showed the decreased diameter of the nanofibers in the range of 35-160nm compared to the PA nanofiber. The factors affecting the structure of nanofibers (e.g. ratio of decyl-3-methylimidazolium mono bromate to PA, coating time and applied voltage) were studied. In addition, influential parameters of extraction/desorption performance such as ionic strength, extraction time, and desorption time and temperature were studied. The limit of detections and limit of quantifications were obtained in the range of 0.75-0.9 and 2-5ngL-1, respectively, demonstrating high efficiency of the prepared nanofiber. The developed method also showed good repeatability, RSD 4-9% (n=3), for the spiked aqueous solution at concentration level 150ngL-1 of chlorobenzenes, and linearity,R=0.996, in the range of 5-5000ngL-1.
Collapse
Affiliation(s)
- Ali Roostaie
- Technology Management Department, Police Sciences and Social Studies Institute, Tehran,, Iran.
| | - Sorosh Rastegar
- Analytical Chemistry Laboratories, Department of Chemistry, Sharif Technology University, Tehran, Iran
| | - Hamid Najarzadegan
- Analytical Chemistry Laboratories, Department of Chemistry, Tehran University, Tehran, Iran
| | - Shokooh Ehteshami
- Analytical Chemistry Laboratories, Department of Chemistry, Islamic Azad University - Central Tehran branch, Tehran, Iran
| |
Collapse
|
18
|
Piri-Moghadam H, Alam MN, Pawliszyn J. Review of geometries and coating materials in solid phase microextraction: Opportunities, limitations, and future perspectives. Anal Chim Acta 2017; 984:42-65. [PMID: 28843569 DOI: 10.1016/j.aca.2017.05.035] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022]
Abstract
The development of new support and geometries of solid phase microextraction (SPME), including metal fiber assemblies, coated-tip, and thin film microextraction (TFME) (i.e. self-supported, fabric and blade supported), as well as their effects on diffusion and extraction rate of analytes were discussed in the current review. Application of main techniques widely used for preparation of a variety of coating materials of SPME, including sol-gel technique, electrochemical and electrospinning methods as well as the available commercial coatings, were presented. Advantages and limitations of each technique from several aspects, such as range of application, biocompatibility, availability in different geometrical configurations, method of preparation, incorporation of various materials to tune the coating properties, and thermal and physical stability, were also investigated. Future perspectives of each technique to improve the efficiency and stability of the coatings were also summarized. Some interesting materials including ionic liquids (ILs), metal organic frameworks (MOFs) and particle loaded coatings were briefly presented.
Collapse
Affiliation(s)
- Hamed Piri-Moghadam
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Md Nazmul Alam
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
19
|
Wang F, Zheng J, Qiu J, Liu S, Chen G, Tong Y, Zhu F, Ouyang G. In Situ Hydrothermally Grown TiO 2@C Core-Shell Nanowire Coating for Highly Sensitive Solid Phase Microextraction of Polycyclic Aromatic Hydrocarbons. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1840-1846. [PMID: 28001349 DOI: 10.1021/acsami.6b14748] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanostructured materials have great potential for solid phase microextraction (SPME) on account of their tiny size, distinct architectures and superior physical and chemical properties. Herein, a core-shell TiO2@C fiber for SPME was successfully fabricated by the simple hydrothermal reaction of a titanium wire and subsequent amorphous carbon coating. The readily hydrothermal procedure afforded in situ synthesis of TiO2 nanowires on a titanium wire and provided a desirable substrate for further coating of amorphous carbon. Benefiting from the much larger surface area of subsequent TiO2 and good adsorption property of the amorphous carbon coating, the core-shell TiO2@C fiber was utilized for the SPME device for the first time and proved to have better performance in extraction of polycyclic aromatic hydrocarbons. In comparison to the polydimethylsiloxane (PDMS) and PDMS/divinylbenzene (DVB) fiber for commercial use, the TiO2@C fiber obtained gas chromatography responses 3-8 times higher than those obtained by the commercial 100 μm PDMS and 1-9 times higher than those obtained by the 65 μm PDMS/DVB fiber. Under the optimized extraction conditions, the low detection limits were obtained in the range of 0.4-7.1 ng L-1 with wider linearity in the range of 10-2000 ng L-1. Moreover, the fiber was successfully used for the determination of polycyclic aromatic hydrocarbons in Pearl River water, which demonstrated the applicability of the core-shell TiO2@C fiber.
Collapse
Affiliation(s)
- Fuxin Wang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Juan Zheng
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Junlang Qiu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Shuqin Liu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Guosheng Chen
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Yexiang Tong
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Fang Zhu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou 510275, P. R. China
| |
Collapse
|
20
|
Sun L, Zhang M, Natarajan V, Yu X, Zhang X, Zhan J. Au@Ag core–shell nanoparticles with a hidden internal reference promoted quantitative solid phase microextraction-surface enhanced Raman spectroscopy detection. RSC Adv 2017. [DOI: 10.1039/c7ra03164e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Structural representation of the SPME-SERS fiber with an internal reference and the SERS detection.
Collapse
Affiliation(s)
- Lei Sun
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry
- Department of Chemistry
- Shandong University
- Jinan
- P. R. China
| | - Min Zhang
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry
- Department of Chemistry
- Shandong University
- Jinan
- P. R. China
| | - Vinothkumar Natarajan
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry
- Department of Chemistry
- Shandong University
- Jinan
- P. R. China
| | - Xiaofei Yu
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry
- Department of Chemistry
- Shandong University
- Jinan
- P. R. China
| | - Xiaoli Zhang
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry
- Department of Chemistry
- Shandong University
- Jinan
- P. R. China
| | - Jinhua Zhan
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry
- Department of Chemistry
- Shandong University
- Jinan
- P. R. China
| |
Collapse
|
21
|
Song W, Guo M, Zhang Y, Yang Y, Wang X, Du X. Hydroxyundecanethiol-Modified Steel Fibers for the Selective Solid-Phase Microextraction of Polycyclic Aromatic Hydrocarbons from River and Wastewater. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1225306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Wenlan Song
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Mei Guo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Yida Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Yaoxia Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Xuemei Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
- Department of Environmental Analysis, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu, Lanzhou, China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
- Department of Environmental Analysis, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu, Lanzhou, China
| |
Collapse
|
22
|
Zhen Q, Zhang M, Song W, Wang H, Wang X, Du X. Rapid in situ growth of oriented titanium-nickel oxide composite nanotubes arrays coated on a nitinol wire as a solid-phase microextraction fiber coupled to HPLC-UV. J Sep Sci 2016; 39:3761-3768. [DOI: 10.1002/jssc.201600260] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/10/2016] [Accepted: 07/25/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Qi Zhen
- College of Chemistry and Chemical Engineering; Northwest Normal University; Lanzhou China
| | - Min Zhang
- College of Chemistry and Chemical Engineering; Northwest Normal University; Lanzhou China
| | - Wenlan Song
- College of Chemistry and Chemical Engineering; Northwest Normal University; Lanzhou China
| | - Huiju Wang
- College of Chemistry and Chemical Engineering; Northwest Normal University; Lanzhou China
| | - Xuemei Wang
- College of Chemistry and Chemical Engineering; Northwest Normal University; Lanzhou China
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu; Lanzhou China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering; Northwest Normal University; Lanzhou China
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu; Lanzhou China
| |
Collapse
|
23
|
Wang H, Song W, Zhang M, Zhen Q, Guo M, Zhang Y, Du X. Hydrothermally grown and self-assembled modified titanium and nickel oxide composite nanosheets on Nitinol-based fibers for efficient solid phase microextraction. J Chromatogr A 2016; 1468:33-41. [PMID: 27667650 DOI: 10.1016/j.chroma.2016.09.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 10/21/2022]
Abstract
A novel titanium and nickel oxide composite nanosheets (TiO2/NiOCNSs) coating was in situ grown on a Nitinol (NiTi) wire by direct hydrothermal treatment and modified by self-assembly of trichlorophenylsilane for solid phase microextraction (SPME). TiO2/NiOCNSs were radially oriented and chemically bonded to the NiTi substrate with double-faced open access sites. Moreover the phenyl modified TiO2/NiOCNSs (TiO2/NiOCNSs-Ph) coating exhibited original surface supporting framework favorable for effective SPME. The extraction performance of TiO2/NiOCNSs-Ph coated NiTi (NiTi-TiO2/NiOCNSs-Ph) fiber was investigated for the concentration and detection of ultraviolet (UV) filters, polycyclic aromatic hydrocarbons (PAHs), phthalate acid esters and polychlorinated biphenyls coupled to HPLC with UV detection. The novel fiber exhibited better selectivity for UV filters and PAHs and presented greater extraction capability compared to commercial polydimethylsiloxane and polyacrylate fibers. Under the optimized conditions for SPME of UV filters, the proposed method presented linear ranges from 0.1 to 300μg/L with correlation coefficients of higher than 0.999 and limits of detection from 0.030μg/L to 0.064μg/L. Relative standard deviations (RSDs) were below 7.16% and 8.42% for intra-day and inter-day measurements with the single fiber, respectively. Furthermore RSDs for fiber-to-fiber reproducibility from 6.57% to 8.93% were achieved. The NiTi-TiO2/NiOCNSs-Ph fiber can be used up to 200 times. The proposed method was successfully applied to the preconcentration and determination of trace target UV filters in different environmental water samples. The relative recoveries from 87.3% to 104% were obtained with RSDs less than 8.7%.
Collapse
Affiliation(s)
- Huiju Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Wenlan Song
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Qi Zhen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Mei Guo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Yida Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China; Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou, 730070, China.
| |
Collapse
|
24
|
Zhang Y, Wu D, Yan X, Guan Y. Rapid solid-phase microextraction of polycyclic aromatic hydrocarbons in water samples by a coated through-pore sintered titanium disk. Talanta 2016; 154:400-8. [DOI: 10.1016/j.talanta.2016.03.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/20/2016] [Accepted: 03/28/2016] [Indexed: 10/22/2022]
|
25
|
Guo M, Song W, Wang T, Li Y, Wang X, Du X. Phenyl-functionalization of titanium dioxide-nanosheets coating fabricated on a titanium wire for selective solid-phase microextraction of polycyclic aromatic hydrocarbons from environment water samples. Talanta 2015; 144:998-1006. [PMID: 26452919 DOI: 10.1016/j.talanta.2015.07.064] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/17/2015] [Accepted: 07/23/2015] [Indexed: 11/15/2022]
Abstract
A novel titanium dioxide-nanosheets coating on a titanium wire (TiO2NS-Ti) was in situ fabricated by one-step electrochemical anodization in ethylene glycol with ammonium fluoride and followed by phenyl-functionalization for selective solid-phase microextraction (SPME). The fabricated TiO2NS coating exhibits higher specific surface area and more active sites, it also provides an ideal nanostructure and a robust substrate for subsequent surface modification. These characteristics were useful for efficient extraction. The SPME performance of phenyl-functionalized TiO2NS-Ti (ph-TiO2NS-Ti) fiber was evaluated by using ultraviolet filters, polychlorinated biphenyls and polycyclic aromatic hydrocarbons (PAHs) as model compounds coupled to high performance liquid chromatography with UV detection (HPLC-UV). It was found that the ph-TiO2NS-Ti fiber exhibited high extraction capability, good selectivity and rapid mass transfer for PAHs. The main parameters affecting extraction performance were investigated and optimized. Under optimized conditions, the proposed fiber showed good extraction efficiency comparable to those of commercial polydimethylsiloxane and polyacrylate fibers toward PAHs. The calibration graphs were linear over the range of 0.05-300 µg L(-1). The limits of detection of the proposed method were 0.008-0.043 µg L(-1) (S/N=3). Single fiber repeatability varied from 3.51% to 5.23% and fiber-to-fiber reproducibility ranged from 4.43% to 7.65% for the extraction of water spiked with 25 µg L(-1) each analyte (n=5). The established SPME-HPLC-UV method was successfully applied to selective concentration and sensitive determination of target PAHs from real environmental water samples with recoveries from 86.2% to 112% at the spiking level of 10 µg L(-1) and 50 µg L(-1). The relative standard deviations were below 9.45%. Furthermore, the ph-TiO2NS-Ti fiber can be fabricated in a reproducible manner, and has high stability and long service lifetime.
Collapse
Affiliation(s)
- Mei Guo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Wenlan Song
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Tiane Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yi Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xuemei Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China; Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China; Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, China.
| |
Collapse
|
26
|
Zhang Y, Yang Y, Li Y, Zhang M, Wang X, Du X. Growth of cedar-like Au nanoparticles coating on an etched stainless steel wire and its application for selective solid-phase microextraction. Anal Chim Acta 2015; 876:55-62. [DOI: 10.1016/j.aca.2015.03.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 01/04/2023]
|
27
|
Liu S, Xie L, Zheng J, Jiang R, Zhu F, Luan T, Ouyang G. Mesoporous TiO₂ nanoparticles for highly sensitive solid-phase microextraction of organochlorine pesticides. Anal Chim Acta 2015; 878:109-17. [PMID: 26002332 DOI: 10.1016/j.aca.2015.03.054] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/29/2015] [Accepted: 03/31/2015] [Indexed: 12/28/2022]
Abstract
Mesoporous TiO2 nanoparticles were synthesized with the hydrothermal method and characterized by powder X-ray diffraction (PXRD) and transmission electron microscope (TEM). Then a superior solid-phase microextraction (SPME) fiber was fabricated by sequentially coating the stainless steel fiber with silicone sealant film and mesoporous TiO2 powder. The developed fiber possessed a homogeneous surface and a long life-span up to 100 times at direct immersing (DI) extraction mode. Under the optimized conditions, the extraction efficiencies of the self-made 17 μm TiO2 fiber for six organochlorine pesticides (OCPs) were higher than those of the two commercial fibers (65 μm PDMS/DVB and 85 μm PA fibers) which were much thicker than the former. As for analytical performance, low detection limits (0.08-0.60 ng L(-1)) and wide linearity (5-5000 ng L(-1)) were achieved under the optimal conditions. The repeatabilities (n=5) for single fiber were between 2.8 and 12.3%, while the reproducibilities (n=3) of fiber-to-fiber were in the range of 3.7-15.7%. The proposed fiber was successfully applied to the sensitive analysis of OCPs in real water samples and four of the six analytes were detected from the rainwater and the lake water samples.
Collapse
Affiliation(s)
- Shuqin Liu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Lijun Xie
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Juan Zheng
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Ruifeng Jiang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Fang Zhu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Tiangang Luan
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
28
|
Zhang S, Li Z, Wang C, Wang Z. Cyclodextrin-functionalized reduced graphene oxide as a fiber coating material for the solid-phase microextraction of some volatile aromatic compounds. J Sep Sci 2015; 38:1711-20. [DOI: 10.1002/jssc.201401363] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/25/2015] [Accepted: 02/14/2015] [Indexed: 01/31/2023]
Affiliation(s)
- Shuaihua Zhang
- Department of Chemistry; College of Science; Agricultural University of Hebei; Baoding Hebei China
| | - Zhi Li
- Department of Chemistry; College of Science; Agricultural University of Hebei; Baoding Hebei China
| | - Chun Wang
- Department of Chemistry; College of Science; Agricultural University of Hebei; Baoding Hebei China
| | - Zhi Wang
- Department of Chemistry; College of Science; Agricultural University of Hebei; Baoding Hebei China
| |
Collapse
|
29
|
Bagheri H, Roostaie A. Polybutylene terephthalate-nickel oxide nanocomposite as a fiber coating. Anal Chim Acta 2015; 863:20-8. [DOI: 10.1016/j.aca.2015.01.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/10/2015] [Accepted: 01/16/2015] [Indexed: 11/24/2022]
|
30
|
Li L, Guo R, Li Y, Guo M, Wang X, Du X. In situ growth and phenyl functionalization of titania nanoparticles coating for solid-phase microextraction of ultraviolet filters in environmental water samples followed by high performance liquid chromatography-UV detection. Anal Chim Acta 2015; 867:38-46. [PMID: 25813026 DOI: 10.1016/j.aca.2015.01.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/21/2015] [Accepted: 01/28/2015] [Indexed: 12/22/2022]
Abstract
Based on TiO2-nanoparticles coating fabricated by a one-step anodization method on titanium wire substrate, a novel phenyl functionalized solid-phase microextraction (SPME) fiber coating was prepared by simple and rapid in situ chemical assembling technique between the fiber surface titanol groups and trichlorophenylsilane reaction. The as-fabricated fiber exhibited good extraction capability for some UV filters and was employed to determine the ultraviolet (UV) filters in combination with high performance liquid chromatography-UV detection (HPLC-UV). The main parameters affecting extraction performance were investigated and optimized. Under the optimized conditions, the developed method was applied to detect several UV filters at trace concentration levels with only 8 mL of sample volume. They were determined in the range from 0.005 to 25 μg L(-1) with detection limits (S/N=3) from 0.1 to 50 ng L(-1). The relative standard deviations (RSDs) for single fiber repeatability varied from 4.6 to 6.5% (n=5) and fiber-to-fiber reproducibility (n=5) ranged from 5.5 to 9.1%. The linear ranges spanned two-four magnitudes with correlation coefficients above 0.9990. Five real water samples including four Yellow River water samples and one rain water sample were determined sensitively with good recoveries ranging from 86.2 to 105.5%. The functionalized fiber coating performed good reproducible manner, high mechanical strength, good stability and long service life. Moreover, this study proposed an efficient sample pretreatment method for the determination of UV filters from environmental water samples.
Collapse
Affiliation(s)
- Li Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China; College of Science, Gansu Agriculture University, Lanzhou 730070, PR China
| | - Ruibin Guo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Yi Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Mei Guo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Xuemei Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, PR China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, PR China.
| |
Collapse
|
31
|
Fabrication and application of zinc-zinc oxide nanosheets coating on an etched stainless steel wire as a selective solid-phase microextraction fiber. J Chromatogr A 2015; 1384:28-36. [PMID: 25662065 DOI: 10.1016/j.chroma.2015.01.059] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 01/25/2023]
Abstract
A novel zinc-zinc oxide (Zn-ZnO) nanosheets coating was directly fabricated on an etched stainless steel wire substrate as solid-phase microextraction (SPME) fiber via previous electrodeposition of robust Zn coating. The scanning electron micrograph of the Zn-ZnO nanosheets coated fiber exhibits a flower-like nanostructure with high surface area. The SPME performance of as-fabricated fiber was investigated for the concentration and determination of polycyclic aromatic hydrocarbons, phthalates and ultraviolet (UV) filters coupled to high performance liquid chromatography with UV detection (HPLC-UV). It was found that the Zn-ZnO nanosheets coating exhibited high extraction capability, good selectivity and rapid mass transfer for some UV filters. The main parameters affecting extraction performance were investigated and optimized. Under the optimized conditions, the calibration graphs were linear over the range of 0.1-200μgL(-1). The limits of detection of the proposed method were 0.052-0.084μgL(-1) (S/N=3). The single fiber repeatability varied from 5.18% to 7.56% and the fiber-to-fiber reproducibility ranged from 6.74% to 8.83% for the extraction of spiked water with 50μgL(-1) UV filters (n=5). The established SPME-HPLC-UV method was successfully applied to the selective concentration and sensitive determination of target UV filters from real environmental water samples with recoveries from 85.8% to 105% at the spiking level of 10μgL(-1) and 30μgL(-1). The relative standard deviations were below 9.7%.
Collapse
|
32
|
Electrodeposition of gold nanoparticles onto an etched stainless steel wire followed by a self-assembled monolayer of octanedithiol as a fiber coating for selective solid-phase microextraction. J Chromatogr A 2014; 1372C:25-33. [DOI: 10.1016/j.chroma.2014.10.095] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 10/28/2014] [Accepted: 10/28/2014] [Indexed: 01/06/2023]
|
33
|
Li Y, Zhang M, Yang Y, Wang X, Du X. Electrochemical in situ fabrication of titanium dioxide-nanosheets on a titanium wire as a novel coating for selective solid-phase microextraction. J Chromatogr A 2014; 1358:60-7. [DOI: 10.1016/j.chroma.2014.06.094] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 10/25/2022]
|
34
|
|
35
|
Li Y, Ma M, Zhang M, Yang Y, Wang X, Du X. In situ anodic growth of rod-like TiO2 coating on a Ti wire as a selective solid-phase microextraction fiber. RSC Adv 2014. [DOI: 10.1039/c4ra08001g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel rod-like TiO2 based SPME coating was directly fabricated by in situ anodization of Ti wire (Fig. 1). It has larger surface area and longer service time for sensitive determination of ultraviolet filters in environmental water samples.
Collapse
Affiliation(s)
- Yi Li
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070, China
| | - Mingguang Ma
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070, China
| | - Min Zhang
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070, China
| | - Yaoxia Yang
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070, China
| | - Xuemei Wang
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070, China
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu
- Lanzhou 730070, China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070, China
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu
- Lanzhou 730070, China
| |
Collapse
|
36
|
Electrochemically prepared solid-phase microextraction coatings—A review. Anal Chim Acta 2013; 781:1-13. [DOI: 10.1016/j.aca.2013.03.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/25/2013] [Accepted: 03/01/2013] [Indexed: 11/21/2022]
|
37
|
Feng J, Qiu H, Liu X, Jiang S, Feng J. The development of solid-phase microextraction fibers with metal wires as supporting substrates. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.01.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Spietelun A, Kloskowski A, Chrzanowski W, Namieśnik J. Understanding solid-phase microextraction: key factors influencing the extraction process and trends in improving the technique. Chem Rev 2012; 113:1667-85. [PMID: 23273266 DOI: 10.1021/cr300148j] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Agata Spietelun
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | | | | | | |
Collapse
|
39
|
Zeng J, Liu H, Chen J, Huang J, Yu J, Wang Y, Chen X. Octadecyltrimethoxysilane functionalized ZnO nanorods as a novel coating for solid-phase microextraction with strong hydrophobic surface. Analyst 2012; 137:4295-301. [PMID: 22858665 DOI: 10.1039/c2an35542f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we have, for the first time, proposed an approach by combining self-assembled monolayers (SAMs) and nanomaterials (NMs) for the preparation of novel solid-phase microextraction (SPME) coatings. The self-assembly of octadecyltrimethoxysilane (OTMS) on the surface of ZnO nanorods (ZNRs) was selected as a model system to demonstrate the feasibility of this approach. The functionalization of OTMS on the surface of ZNRs was characterized and confirmed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The OTMS-ZNRs coated fiber exhibited stronger hydrophobicity after functionalization, and its extraction efficiency for non-polar benzene homologues was increased by a factor of 1.5-3.6 when compared to a ZNRs fiber with almost identical thickness and façade. In contrast, the extraction efficiency of the OTMS-ZNRs coated fiber for polar aldehydes was 1.6-4.0-fold lower than that of the ZNRs coated fiber, further indicating its enhanced surface hydrophobicity. The OTMS-ZNRs coated fiber revealed a much higher capacity upon increasing the OTMS layer thickness to 5 μm, leading to a factor of 12.0-13.4 and 1.8-2.5 increase in extraction efficiency for the benzene homologues relative to a ZNRs coated fiber and a commercial PDMS fiber, respectively. The developed HS-SPME-GC method using the OTMS-ZNRs coated fiber was successfully applied to the determination of the benzene homologues in limnetic water samples with recovery ranging from 83 to 113% and relative standard deviations (RSDs) of less than 8%.
Collapse
Affiliation(s)
- Jingbin Zeng
- State key laboratory of heavy oil processing, College of Science, China University of Petroleum, Qingdao, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Towards greater mechanical, thermal and chemical stability in solid-phase microextraction. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2011.11.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Hashemi P, Badiei A, Shamizadeh M, Ziarani GM, Ghiasvand AR. Preparation of a New Solid-Phase Microextraction Fiber by Coating Silylated Nanoporous Silica on a Copper Wire. J CHIN CHEM SOC-TAIP 2012. [DOI: 10.1002/jccs.201100429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Aniline-silica nanocomposite as a novel solid phase microextraction fiber coating. J Chromatogr A 2012; 1238:22-9. [PMID: 22498354 DOI: 10.1016/j.chroma.2012.03.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 11/23/2022]
Abstract
A new unbreakable solid phase microextraction (SPME) fiber coating based on aniline-silica nanocomposite was electrodeposited on a stainless steel wire. The electropolymerization process was carried out at a constant deposition potential, applied to the corresponding aqueous electrolyte containing aniline and silica nanoparticles. The scanning electron microscopy (SEM) images showed the non-smooth and the porous surface structure of the prepared nanocomposite. The applicability of the new fiber coating was examined by headspace-solid phase microextraction (HS-SPME) of some environmentally important polycyclic aromatic hydrocarbons (PAHs), as model compounds, from aqueous samples. Subsequently, the extracted analytes were transferred into a gas chromatography (GC) by thermal desorption. Parameters affecting the synthesizing and extraction processes including the voltage of power supply, the weight ratio of components, the time of electrodeposition, extraction time and temperature, the ionic strength, and desorption temperature and time were optimized. Eventually, the developed method was validated by gas chromatography-mass spectrometry (GC-MS). At the optimum conditions, the relative standard deviation (%RSD) values for a double distilled water spiked with the selected PAHs at 40 ng L(-1) were 6-13% (n=3) while the limit of detection (LOD) results were between 1 and 3 ng L(-1). The calibration graphs were linear in the concentration range from 20 to 4000 ng L(-1) (R(2)>0.995). Finally the developed method was applied to the analysis of Kalan dam, rain and tap water samples and the relative recovery values were found to be in the range of 76-109%, under optimized conditions. In addition, the synthesis of the nanocomposite coating was carried out conveniently while it is rather inexpensive, easy, simple, rapid and highly durable and can be used frequently.
Collapse
|
43
|
Critical overview of selected contemporary sample preparation techniques. J Chromatogr A 2012; 1221:84-98. [DOI: 10.1016/j.chroma.2011.11.011] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/26/2011] [Accepted: 11/06/2011] [Indexed: 11/18/2022]
|
44
|
Pena-Abaurrea M, Ramos L. Miniaturization of Analytical Methods. CHALLENGES IN GREEN ANALYTICAL CHEMISTRY 2011. [DOI: 10.1039/9781849732963-00107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This chapter highlights miniaturization in sample preparation as a valuable alternative for green analytical chemistry. The current state of the art is discussed on the basis of examples selected from representative application areas, including biomedical, environmental and food analysis, and involving conventional instrumental techniques for final determination of the target compounds. The emphasis is on those techniques and approaches that have already demonstrated their practicality by the analysis of real-life samples, and in particular on those dealing with the accurate determination of minor organic components. The potential of recent developments in this field for sample treatment simplification and complete hyphenation of analytical processes are discussed and the most pressing remaining limitations evaluated.
Collapse
Affiliation(s)
- Miren Pena-Abaurrea
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry CSIC, Juan de la Cierva 3, 28006 Madrid Spain
| | - Lourdes Ramos
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry CSIC, Juan de la Cierva 3, 28006 Madrid Spain
| |
Collapse
|
45
|
A new solid phase micro extraction for simultaneous head space extraction of ultra traces of polar and non-polar compounds. Anal Chim Acta 2011; 689:117-21. [PMID: 21338766 DOI: 10.1016/j.aca.2011.01.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 01/09/2011] [Accepted: 01/10/2011] [Indexed: 11/24/2022]
Abstract
The results of the innovative study on a new stationary phase with high efficiency based on ZnO nano and micro rod coating on fused silica are reported in this paper. ZnO nanorods with a diameter in the range of 70-300 nm and the length of about 500 nm, have been grown on fused silica fibers using a hydrothermal process. The extraction properties of the fiber were investigated using headspace solid-phase microextraction (HS-SPME) mode coupled with gas chromatography-mass spectrometry detection (GC-MS) for 1,4-dichloro-nitrobenzene, biphenyl and acenaphthene. The calibration curves were linear up to 10(2)-10(7) ng L(-1) (R(2)>0.995) with detection limits of 10(-3) ng L(-1) for biphenyl and acenaphthene and 10 ng L(-1) for 1,4-dichloro-nitrobenzene. The RSD for single fiber and fiber-to-fiber were less than 7.0 and 11.5%, respectively. The high stability of the ZnO coating is proved at relatively high temperatures (up to 300°C) with a high extraction capacity and long lifespan (more than 100 times). Promising recoveries (91-102%) were obtained in environmental water samples analysis by applying the proposed technique.
Collapse
|
46
|
SU CJ, SRIMURUGAN S, CHEN C, SHU HC. Sol-gel Titania-Coated Needles for Solid Phase Dynamic Extraction-GC/MS Analysis of Desomorphine and Desocodeine. ANAL SCI 2011; 27:1107-13. [DOI: 10.2116/analsci.27.1107] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Preparation of a polyacrylonitrile/multi-walled carbon nanotubes composite by surface-initiated atom transfer radical polymerization on a stainless steel wire for solid-phase microextraction. J Chromatogr A 2010; 1217:2758-67. [DOI: 10.1016/j.chroma.2010.02.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 02/03/2010] [Accepted: 02/12/2010] [Indexed: 11/17/2022]
|
48
|
A novel TiO2 nanotube array/Ti wire incorporated solid-phase microextraction fiber with high strength, efficiency and selectivity. J Chromatogr A 2010; 1217:1898-903. [DOI: 10.1016/j.chroma.2010.01.080] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 01/21/2010] [Accepted: 01/27/2010] [Indexed: 11/18/2022]
|
49
|
Spietelun A, Pilarczyk M, Kloskowski A, Namieśnik J. Current trends in solid-phase microextraction (SPME) fibre coatings. Chem Soc Rev 2010; 39:4524-37. [DOI: 10.1039/c003335a] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Djozan D, Ebrahimi B. Preparation of new solid phase micro extraction fiber on the basis of atrazine-molecular imprinted polymer: Application for GC and GC/MS screening of triazine herbicides in water, rice and onion. Anal Chim Acta 2008; 616:152-9. [DOI: 10.1016/j.aca.2008.04.037] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 04/13/2008] [Accepted: 04/15/2008] [Indexed: 10/22/2022]
|