1
|
Edwards KA, Randall EA, Wolfe PC, Kraft CE, Angert ER. Pre-analytical challenges from adsorptive losses associated with thiamine analysis. Sci Rep 2024; 14:10269. [PMID: 38704450 PMCID: PMC11069560 DOI: 10.1038/s41598-024-60910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Thiamine (vitamin B1) is an essential vitamin serving in its diphosphate form as a cofactor for enzymes in the citric acid cycle and pentose-phosphate pathways. Its concentration reported in the pM and nM range in environmental and clinical analyses prompted our consideration of the components used in pre-analytical processing, including the selection of filters, filter apparatuses, and sample vials. The seemingly innocuous use of glass fiber filters, glass filter flasks, and glass vials, ubiquitous in laboratory analysis of clinical and environmental samples, led to marked thiamine losses. 19.3 nM thiamine was recovered from a 100 nM standard following storage in glass autosampler vials and only 1 nM of thiamine was obtained in the filtrate of a 100 nM thiamine stock passed through a borosilicate glass fiber filter. We further observed a significant shift towards phosphorylated derivatives of thiamine when an equimolar mixture of thiamine, thiamine monophosphate, and thiamine diphosphate was stored in glass (most notably non-silanized glass, where a reduction of 54% of the thiamine peak area was observed) versus polypropylene autosampler vials. The selective losses of thiamine could lead to errors in interpreting the distribution of phosphorylated species in samples. Further, some loss of phosphorylated thiamine derivatives selectively to amber glass vials was observed relative to other glass vials. Our results suggest the use of polymeric filters (including nylon and cellulose acetate) and storage container materials (including polycarbonate and polypropylene) for thiamine handling. Losses to cellulose nitrate and polyethersulfone filters were far less substantial than to glass fiber filters, but were still notable given the low concentrations expected in samples. Thiamine losses were negated when thiamine was stored diluted in trichloroacetic acid or as thiochrome formed in situ, both of which are common practices, but not ubiquitous, in thiamine sample preparation.
Collapse
Affiliation(s)
- Katie A Edwards
- Department of Pharmaceutical Sciences, Binghamton University, Binghamton, NY, 13902, USA.
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| | - Eileen A Randall
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, 14853, USA
| | - Patricia C Wolfe
- Department of Pharmaceutical Sciences, Binghamton University, Binghamton, NY, 13902, USA
| | - Clifford E Kraft
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, 14853, USA
| | - Esther R Angert
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
2
|
Manaenkov O, Nikoshvili L, Bykov A, Kislitsa O, Grigoriev M, Sulman M, Matveeva V, Kiwi-Minsker L. An Overview of Heterogeneous Catalysts Based on Hypercrosslinked Polystyrene for the Synthesis and Transformation of Platform Chemicals Derived from Biomass. Molecules 2023; 28:8126. [PMID: 38138614 PMCID: PMC10745566 DOI: 10.3390/molecules28248126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Platform chemicals, also known as chemical building blocks, are substances that serve as starting materials for the synthesis of various value-added products, which find a wide range of applications. These chemicals are the key ingredients for many fine and specialty chemicals. Most of the transformations of platform chemicals are catalytic processes, which should meet the requirements of sustainable chemistry: to be not toxic for humans, to be safe for the environment, and to allow multiple reuses of catalytic materials. This paper presents an overview of a new class of heterogeneous catalysts based on nanoparticles of catalytically active metals stabilized by a polymer matrix of hypercrosslinked polystyrene (HPS). This polymeric support is characterized by hierarchical porosity (including meso- and macropores along with micropores), which is important both for the formation of metal nanoparticles and for efficient mass transfer of reactants. The influence of key parameters such as the morphology of nanoparticles (bimetallic versus monometallic) and the presence of functional groups in the polymer matrix on the catalytic properties is considered. Emphasis is placed on the use of this class of heterogeneous catalysts for the conversion of plant polysaccharides into polyols (sorbitol, mannitol, and glycols), hydrogenation of levulinic acid, furfural, oxidation of disaccharides, and some other reactions that might be useful for large-scale industrial processes that aim to be sustainable. Some challenges related to the use of HPS-based catalysts are addressed and multiple perspectives are discussed.
Collapse
Affiliation(s)
- Oleg Manaenkov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Linda Nikoshvili
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Alexey Bykov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Olga Kislitsa
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Maxim Grigoriev
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Mikhail Sulman
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Valentina Matveeva
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Lioubov Kiwi-Minsker
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
- Ecole Polytechnique Fédérale de Lausanne, ISIC-FSB-EPFL, CH-1015 Lausanne, Switzerland
| |
Collapse
|
3
|
He H, Wen HP, Liu JP, Wu CC, Mai L, Zeng EY. Hydrophobic organic contaminants affiliated with polymer-specific microplastics in urban river tributaries and estuaries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:166415. [PMID: 37598956 DOI: 10.1016/j.scitotenv.2023.166415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Exposure to microplastics (MPs) and hydrophobic organic contaminants (HOCs) combined at high concentrations may induce adverse effects to aquatic organisms in laboratory-scale studies. To determine environmentally relevant concentrations of HOCs in MPs, it is essential to understand the occurrence of MP-affiliated HOCs in the aquatic environment. Here we report the occurrences of HOCs affiliated with polymer-specific floating MPs from 12 tributaries and three estuaries in the Pearl River Delta, South China. Target HOCs include nine synthetic musks (SMs), 14 ultraviolet adsorbents (UVAs), 15 polycyclic aromatic hydrocarbons (PAHs), eight polybrominated diphenyl ethers (PBDEs), and 14 polychlorinated biphenyls (PCBs). Average concentrations of MP-affiliated ∑9SM, ∑14UVA, ∑15PAH, ∑8PBDE, and ∑14PCB were 1790, 5550, 1090, 412, and 107 ng g-1, respectively. The average concentrations of HOCs affiliated with MPs of different polymer types were 9790, 7220, 72,500, and 55,800 ng g-1 for polyethylene (PE), polypropylene, polystyrene, and other MPs, respectively. As the concentration of PE was the highest among all MPs at the average concentration of 0.77 mg m-3, the monthly outflow of PE-affiliated HOCs accounted for the largest proportion (46 %) in the outflow of MP-affiliated HOCs (2.8 g) to the coastal ocean via three estuaries. These results suggest that HOCs were highly concentrated in MPs and varied among different chemicals and polymer types. Due to the differences of polymer characteristics and half-life of affiliated chemicals, future toxicology studies concerning exposure to these combined pollutants may need to specify polymer types and their affiliated chemicals.
Collapse
Affiliation(s)
- Hui He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Hui-Ping Wen
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Ji-Peng Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Chen-Chou Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Lei Mai
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Eddy Y Zeng
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Research Center of Low Carbon Economy for Guangzhou Region, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
A Novel Analytical Approach to Assessing Sorption of Trace Organic Compounds into Micro- and Nanoplastic Particles. Biomolecules 2022; 12:biom12070953. [PMID: 35883509 PMCID: PMC9312822 DOI: 10.3390/biom12070953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Assessing the sorption of trace organic compounds (TOrCs) into micro- and nanoplastic particles has traditionally been performed using an aqueous phase analysis or solvent extractions from the particle. Using thermal extraction/desorption–gas chromatography/mass spectrometry (TD-Pyr-GC/MS) offers a possibility to analyze the TOrCs directly from the particle without a long sample preparation. In this study, a combination of two analytical methods is demonstrated. First, the aqueous phase is quantified for TOrC concentrations using Gerstel Twister® and TD-GC/MS. Subsequently, the TOrCs on the particles are analyzed. Different polymer types and sizes (polymethyl methacrylate (PMMA), 48 µm; polyethylene (PE), 48 µm; polystyrene (PS), 41 µm; and PS, 78 nm) were analyzed for three selected TOrCs (phenanthrene, triclosan, and α-cypermethrin). The results revealed that, over a period of 48 h, the highest and fastest sorption occurred for PS 78 nm particles. This was confirmed with a theoretical calculation of the particle surface area. It was also shown for the first time that direct quantification of TOrCs from PS 78 nm nanoparticles is possible. Furthermore, in a mixed solute solution, the three selected TOrCs were sorbed onto the particles simultaneously.
Collapse
|
5
|
Reduction in Toxicity of Polystyrene Nanoplastics Combined with Phenanthrene through Binding of Jellyfish Mucin with Nanoplastics. NANOMATERIALS 2022; 12:nano12091427. [PMID: 35564136 PMCID: PMC9105387 DOI: 10.3390/nano12091427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
Mucin (Mu), a biological substance extracted from jellyfish (Aurelia aurita), was used to reduce the toxic effect of polystyrene nanoplastics (PS-NP) combined with phenanthrene (Phe) in the aquatic environment of zebrafish (Danio rerio), among other aquatic organisms. Mu showed a high binding capacity, as it bound to 92.84% and 92.87% of the PS-NPs (concentration of 2.0 mg/L) after 0.5 h and 8 h, respectively. A zebrafish embryo development test was conducted to check for any reduction in toxicity by Mu. When exposed to PS-NP + Mu and PS-NP + Phe + Mu, respectively, the hatching rates were 88.33 ± 20.21% and 93.33 ± 2.89%, respectively; these results were not significantly different from those of the control group. However, the hatching rate with the addition of Mu increased, compared to that of the PS-NP (71.83 ± 13.36%) and Phe (37.50 ± 19.83%) treatments, and the morphological abnormality rate decreased. The presence of Mu was also found to obstruct the absorption of PS-NP and PS-NP + Phe by the zebrafish. When zebrafish embryos were exposed to PS-NP at a concentration of 5.0 mg/L, the hatching rate differed significantly from that of the control group, and the expression of CAT and p53 genes increased significantly, but the expression of Bcl-2 decreased significantly. An mRNA sequence analysis revealed that the gene expression levels of the test group containing Mu were similar to those of the control group. These results infer that Mu can be used as a biological material to collect and remove PS-NPs from aquatic environments and reduce toxicity.
Collapse
|
6
|
Peyravi A, Hashisho Z, Crompton D, Anderson JE. Porous carbon black-polymer composites for volatile organic compound adsorption and efficient microwave-assisted desorption. J Colloid Interface Sci 2022; 612:181-193. [PMID: 34992018 DOI: 10.1016/j.jcis.2021.12.097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
Adsorbents with high surface area, thermal stability and microwave absorption ability are highly desired for cyclic adsorption and microwave regeneration processes. However, most polymeric adsorbents are transparent to microwaves. Herein, porous hyper-crosslinked polymers (HCP) of (4,4'-bis((chloromethyl)-1,1'-biphenyl-benzyl chloride)) with different carbon black (CB) contents were synthesized via the Friedel-Crafts reaction. CB was selected as the filler due to its low cost and high dielectric loss and was embedded inside the polymer structure during polymerization. CB-containing composites showed enhanced thermal stability at elevated temperatures, and more than a 90-times increase in the dielectric loss factor, which is favorable for microwave regeneration. Nitrogen physisorption analysis by the Bruner-Emmett-Teller isotherms demonstrated that CB presence in the polymer structure nonlinearly decreases the surface area and total pore volume (by 38% and 26%, respectively at the highest CB load). Based on the characterization testing, 4 wt% of CB was found to be an optimum filler content, having the highest MW absorption and minimal effect on the adsorbent porosity. HCP with 4 wt% CB allowed a substantial increase in the desorption temperature and yielded more than a 450% enhancement in the desorption efficiency compared to HCP without CB.
Collapse
Affiliation(s)
- Arman Peyravi
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, AB T6G 1H9, Canada
| | - Zaher Hashisho
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, AB T6G 1H9, Canada.
| | - David Crompton
- Ford Motor Company, Environmental Quality Office, Dearborn, MI 48121, USA
| | - James E Anderson
- Ford Motor Company, Research and Advanced Engineering, Dearborn, MI 48121, USA
| |
Collapse
|
7
|
SUMIYA O, NAKAGAMI K, UETA I, SAITO Y. Molecular Shape Selectivity for Polycyclic Aromatic Compounds on a Poly(benzoguanamine-<i>co</i>-melamine-<i>co</i>-formaldehyde) Stationary Phase in Reversed-Phase Liquid Chromatography. CHROMATOGRAPHY 2022. [DOI: 10.15583/jpchrom.2022.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Ohjiro SUMIYA
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology
| | - Koki NAKAGAMI
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology
| | - Ikuo UETA
- Department of Applied Chemistry, University of Yamanashi
| | - Yoshihiro SAITO
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology
| |
Collapse
|
8
|
Koler A, Kolar M, Jeřábek K, Krajnc P. Influence of Functional Group Concentration on Hypercrosslinking of Poly(vinylbenzyl chloride) PolyHIPEs: Upgrading Macroporosity with Nanoporosity. Polymers (Basel) 2021; 13:polym13162721. [PMID: 34451260 PMCID: PMC8399335 DOI: 10.3390/polym13162721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022] Open
Abstract
With the aim to study the influence of monomer ratio in poly(high internal phase emulsions) (polyHIPEs) on the polymer network architecture and morphology of poly(vinylbenzyl chloride-co-divinylbenzene-co-styrene) after hypercrosslinking via the internal Friedel–Crafts process, polyHIPEs with 80% overall porosity were prepared at three different initial crosslinking degrees, namely 2, 5, and 10 mol.%. All had typical interconnected cellular morphology, which was not affected by the hypercrosslinking process. Nitrogen adsorption and desorption experiments with BET and t-plot modelling were used for the evaluation of the newly introduced nanoporosity and in combination with elemental analysis for the evaluation of the extent of the hypercrosslinking. It was found that, for all three initial crosslinking degrees, the minimum amount of functional monomer, 4-vinylbenzyl chloride, was approximately 30 mol.%. Hypercrosslinking of polymers with lower concentrations of functional monomer did not result in induction of nanoporosity while the initial crosslinking degree had a much lower impact on the formation of nanoporosity.
Collapse
Affiliation(s)
- Amadeja Koler
- PolyOrgLab, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia;
| | - Mitja Kolar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia;
| | - Karel Jeřábek
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojova 2/135, CZ-165 02 Prague, Czech Republic;
| | - Peter Krajnc
- PolyOrgLab, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia;
- Correspondence:
| |
Collapse
|
9
|
Nesterenko PN, Nesterenko EP. Hydrophobicity of polymer based anion-exchange columns for ion chromatography. Heliyon 2021; 7:e07290. [PMID: 34195411 PMCID: PMC8239727 DOI: 10.1016/j.heliyon.2021.e07290] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/26/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
The regularities of the retention of alkanoic and alkanesulfonic acids homologues were investigated for the set of 36 anion-exchange columns produced by various manufacturers. The role of hydrophobic and electrostatic interactions in the retention and separation of organic anions was studied. The methylene selectivity increments α(CH2) were measured for the studied columns with 10 mM sodium hydroxide eluent. The influence of matrix, surface area, polar group structure, ion-exchange capacity, the density of charged functional groups on the surface and other characteristics of anion-exchangers on resin hydrophobicity was considered. A unified approach for the measurements of hydrophobic properties of anion-exchange resins is proposed and the ratio of chloride retention factor (k Cl) to α(CH2) was introduced as mixed-mode factor. The synergetic effect of electrostatic and hydrophobic interactions was observed.
Collapse
Affiliation(s)
- Pavel N. Nesterenko
- Department of Chemistry, Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russian Federation
| | - Ekaterina P. Nesterenko
- Department of Chemistry, Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russian Federation
| |
Collapse
|
10
|
Efficiency increase in hypercrosslinked polymer based on polystyrene in CO2 adsorption process. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03678-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Hu E, Shang S, Fu Z, Zhao X, Nan X, Du Y, Chen X. Cotransport of naphthalene with polystyrene nanoplastics (PSNP) in saturated porous media: Effects of PSNP/naphthalene ratio and ionic strength. CHEMOSPHERE 2020; 245:125602. [PMID: 31864042 DOI: 10.1016/j.chemosphere.2019.125602] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
As emerging contaminants of global concern, nanoplastics are significantly potential carriers of hydrophobic organic compounds in aquatic and soil environment. However, little is known about the interactions between the transports of nanoplastics and organic contaminants in porous media. In this study, the cotransport of naphthalene with polystyrene nanoplastics (PSNP) in saturated sand columns as influenced by the PSNP/naphthalene ratio and ionic strength (IS) was investigated. The presence of PSNP dramatically enhanced the mobility of naphthalene at low IS (0.5 mM), but such effect was prohibited at high IS (5 mM and 50 mM). The mobility of PSNP in the sand column was higher when it was solely exist in the pore-water than that when in the presence of naphthalene, because of the charge-shielding effect. This work showed that the coexistence of PSNP and naphthalene would influence the mobility of each other in the saturated porous media, which highly related to their concentration ratio and IS levels.
Collapse
Affiliation(s)
- Enzhu Hu
- Institute of Resources and Environmental Sciences, School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Siyao Shang
- Institute of Resources and Environmental Sciences, School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Zhongtian Fu
- School of Resource & Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Xin Zhao
- School of Resource & Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Xiangli Nan
- Institute of Resources and Environmental Sciences, School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Yichun Du
- Shaanxi Key Laboratory of Land Consolidation, Xi'an, 710054, China; Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Land and Resources, Shaanxi Provincial Land Engineering Construction Group Co., Ltd, Xi'an, 710075, China.
| | - Xijuan Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
12
|
Ayed C, Huang W, Zhang KAI. Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-019-1884-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AbstractCovalent triazine frameworks (CTFs) have been recently employed for visible light-driven photocatalysis due to their unique optical and electronic properties. However, the usually highly hydrophobic nature of CTFs, which originates from their overall aromatic backbone, leads to limitations of CTFs for applications in aqueous media. In this study, we aim to extend the range of the application media of CTFs and design hybrid material of a CTF and mesoporous silica (SBA-15) for efficient photocatalysis in aqueous medium. A thiophene-containing CTF was directly synthesized in mesopores of SBA-15. Due to the high surface area and the added hydrophilic properties by silica, the hybrid material demonstrated excellent adsorption of organic molecules in water. This leads not only to high photocatalytic performance of the hybrid material for the degradation of organic dyes in water, but also for efficient photocatalysis in solvent-free and solid state. Furthermore, the reusability, stability and easy recovery of the hybrid material offers promising metal-free heterogeneous photocatalyst for broader applications in different reaction media.
Collapse
|
13
|
|
14
|
Liu X, Shi H, Xie B, Dionysiou DD, Zhao Y. Microplastics as Both a Sink and a Source of Bisphenol A in the Marine Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10188-10196. [PMID: 31393116 DOI: 10.1021/acs.est.9b02834] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microplastics were demonstrated to be an environmental sink for hydrophobic organic pollutants, while they can also serve as a potential source of such pollutants. In this study, the sorption and release of bisphenol A in marine water were investigated through laboratory experiments. Sorption and desorption isotherms were developed, and the results reveal that sorption and desorption depend on the crystallinity, elasticity, and hydrophobicity of the polymer concerned. The adsorption and partition of bisphenol A can be quantified using a dual-mode model of the sorption mechanisms. Polyamide and polyurethane were found to exhibit the highest sorption capacity for bisphenol A, and it was almost irreversible, probably due to hydrogen bonding. Polyethylenes and polypropylene exhibited high and reversible sorption without noticeable desorption hysteresis. Glassy polystyrene, poly(vinyl chloride), poly(methyl methacrylate), and poly(ethylene terephthalate) exhibited low sorption capacity and only partial reversibility. Low-density polyethylene and polycarbonate microplastic particles were for the first time proved to be a persistent source releasing bisphenol A into aquatic environments. Salinity, pH, coexisting estrogens, and water chemistry influence the sorption/desorption behaviors to different degrees. Plastic particles can serve as transportation vectors for bisphenol A, which may constitute an ecological risk.
Collapse
Affiliation(s)
| | | | | | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (DChEE) , University of Cincinnati , 705 Engineering Research Center , Cincinnati , Ohio , United States
| | | |
Collapse
|
15
|
Sinha Roy K, Goud D R, Mazumder A, Chandra B, Purohit AK, Palit M, Dubey DK. Triazine-Based Covalent Organic Framework: A Promising Sorbent for Efficient Elimination of the Hydrocarbon Backgrounds of Organic Sample for GC-MS and 1H NMR Analysis of Chemical Weapons Convention Related Compounds. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16027-16039. [PMID: 30964249 DOI: 10.1021/acsami.9b02354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The strict monitoring and precise measurements of chemical warfare agents (CWAs) in environmental and other complex samples with high accuracy have great practical significance from the forensic and Chemical Weapons Convention (CWC) verification point of view. Therefore, this study was aimed to develop an efficient extraction and enrichment method for identification and quantification of toxic agents, especially with high sensitivity and multidetection ability in complex samples. It is the first study on solid-phase extraction (SPE) of CWAs and their related compounds from hydrocarbon backgrounds using covalent triazine-based frameworks (CTFs). This nitrogen-rich CTF sorbent has shown an excellent SPE performance toward sample cleanup by selective elimination of hydrocarbon backgrounds and enrich the CWC related analytes in comparison with the conventional and other reported methods. The best enrichment of the analytes was found with the washing solvent (1 mL of n-hexane) and the extraction solvent (1 mL of dichloromethane). Under the optimized conditions, the SPE method had good linearity in the concentration range of 0.050-10.0 μg mL-1 for organophosphorus esters, 0.040-20.0 μg mL-1 for nerve agents, and 0.200-20.0 μg mL-1 for mustards with correlation coefficients ( r2) between 0.9867 and 0.9998 for all analytes. Limits of detection ( S/ N = 3:1) in the SIM mode were found to be in the range of 0.015-0.050 μg mL-1 for organophosphorus esters, 0.010-0.030 μg mL-1 for nerve agents, and 0.050-0.100 μg mL-1 for blister agents. Limits of quantification ( S/ N = 10:1) were found in the range of 0.050-0.200 μg mL-1 for organophosphorus esters, 0.040-0.100 μg mL-1 for nerve agents, and 0.180-0.350 μg mL-1 for blister agents in the SIM mode. The recoveries of all analytes ranged from 87 to 100% with the relative standard deviations ranging from 1 to 8%. This method was also successfully applied for the sample preparation of 1H NMR analysis of sulfur and nitrogen mustards in the presence of hydrocarbon backgrounds. Therefore, this SPE method provides the single sample preparation for both NMR and GC-MS analyses.
Collapse
Affiliation(s)
- Kanchan Sinha Roy
- Vertox Laboratory , Defence Research and Development Establishment , Jhansi Road , Gwalior 474002 , Madhya Pradesh , India
| | - Raghavender Goud D
- Vertox Laboratory , Defence Research and Development Establishment , Jhansi Road , Gwalior 474002 , Madhya Pradesh , India
| | - Avik Mazumder
- Vertox Laboratory , Defence Research and Development Establishment , Jhansi Road , Gwalior 474002 , Madhya Pradesh , India
| | - Buddhadeb Chandra
- Vertox Laboratory , Defence Research and Development Establishment , Jhansi Road , Gwalior 474002 , Madhya Pradesh , India
| | - Ajay Kumar Purohit
- Vertox Laboratory , Defence Research and Development Establishment , Jhansi Road , Gwalior 474002 , Madhya Pradesh , India
| | - Meehir Palit
- Vertox Laboratory , Defence Research and Development Establishment , Jhansi Road , Gwalior 474002 , Madhya Pradesh , India
| | - Devendra Kumar Dubey
- Vertox Laboratory , Defence Research and Development Establishment , Jhansi Road , Gwalior 474002 , Madhya Pradesh , India
| |
Collapse
|
16
|
Nekrasova NA, Kurbatova SV. Comparative Study of Quinolines and Tetrahydroquinolines Sorption on Various Sorbents from Water-Acetonitrile Solutions. J Chromatogr Sci 2019; 57:369-380. [PMID: 30615111 DOI: 10.1093/chromsci/bmy111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 11/14/2022]
Abstract
The retention of 16 quinoline and tetrahydroquinoline derivatives was investigated under liquid chromatography conditions using porous graphitized carbon (PGC), octadecyl silica (ODS) and hypercrosslinked polystyrene (HCLP) stationary phases. For most of the analytes, retention on PGC was greater than on ODS, while retention on HCLP was even greater than on both ODS and PGC. The non-linearity of retention dependencies on acetonitrile content in the eluent was observed for compounds containing carboxy, hydrazo and methoxy groups. The relationships between quinolines structure and their retention factors were investigated. It was found that sorption on different sorbents correlated with different descriptors. Retention on ODS was found to be highly correlated with lipophilicity only while on HCLP it depended on both lipophilicity and polarizability of the sorbates. The feature of PGC was a good correlation of retention factors with topological and geometrical parameters. Additionally, ability of PGC to form OH…π bonds with hydroxymethylquinolines was found. The observed regularities allow one to rationally optimize the chromatographic analysis of structurally similar compounds, which is very important for bioactive substances.
Collapse
Affiliation(s)
- Nadezhda A Nekrasova
- Department of Physical Chemistry and Chromatography, Samara National Research University Named after Academician S.P. Korolev, 34 Moskovskoye Shosse, Samara, Russia.,Samara Center for Theoretical Material Science, 34 Moskovskoye Shosse, Samara, Russia
| | - Svetlana V Kurbatova
- Department of Physical Chemistry and Chromatography, Samara National Research University Named after Academician S.P. Korolev, 34 Moskovskoye Shosse, Samara, Russia
| |
Collapse
|
17
|
Dmitrienko SG, Tikhomirova TI, Apyari VV, Tolmacheva VV, Kochuk EV, Zolotov YA. Application of Hypercrosslinked Polystyrenes to the Preconcentration and Separation of Organic Compounds and Ions of Elements. JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1134/s1061934818110047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Affiliation(s)
- Jing Huang
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, USA
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - S. Richard Turner
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, USA
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
19
|
Liu L, Fokkink R, Koelmans AA. Sorption of polycyclic aromatic hydrocarbons to polystyrene nanoplastic. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1650-5. [PMID: 26588181 DOI: 10.1002/etc.3311] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 08/14/2015] [Accepted: 11/18/2015] [Indexed: 05/02/2023]
Abstract
Microplastic has become an emerging contaminant of global concern. Bulk plastic can degrade to form smaller particles down to the nanoscale (<100 nm), which are referred to as nanoplastics. Because of their high surface area, nanoplastic may bind hydrophobic chemicals very effectively, increasing their hazard when such nanoplastics are taken up by biota. The present study reports distribution coefficients for sorption of polycyclic aromatic hydrocarbons (PAHs) to 70 nm polystyrene in freshwater, and PAH adsorption isotherms spanning environmentally realistic aqueous concentrations of 10(-5) μg/L to 1 μg/L. Nanopolystyrene aggregate state was assessed using dynamic light scattering. The adsorption isotherms were nonlinear, and the distribution coefficients at the lower ends of the isotherms were very high, with values up to 10(9) L/kg. The high and nonlinear sorption was explained from π-π interactions between the planar PAHs and the surface of the aromatic polymer polystyrene and was higher than for micrometer-sized polystyrene. Reduction of nanopolystyrene aggregate sizes had no significant effect on sorption, which suggests that the PAHs could reach the sorption sites on the pristine nanoparticles regardless of the aggregation state. Pre-extraction of the nanopolystyrene with C18 polydimethylsiloxane decreased sorption of PAHs, which could be explained by removal of the most hydrophobic fraction of the nanopolystyrene. Environ Toxicol Chem 2016;35:1650-1655. © 2015 SETAC.
Collapse
Affiliation(s)
- Lijing Liu
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands
| | - Remco Fokkink
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| | - Albert A Koelmans
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands
- Institute for Marine Resources & Ecosystem Studies, Wageningen UR, IJmuiden, The Netherlands
| |
Collapse
|
20
|
Jiang P, Lucy CA. Retentivity, selectivity and thermodynamic behavior of polycyclic aromatic hydrocarbons on charge-transfer and hypercrosslinked stationary phases under conditions of normal phase high performance liquid chromatography. J Chromatogr A 2016; 1437:176-182. [DOI: 10.1016/j.chroma.2016.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 11/17/2022]
|
21
|
Choi HS, Jeon HJ, Choi JH, Lee GH, Kang JK. Tailoring open metal sites for selective capture of CO₂ in isostructural metalloporphyrin porous organic networks. NANOSCALE 2015; 7:18923-18927. [PMID: 26525992 DOI: 10.1039/c5nr05696a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Porphyrin-based isostructural porous organic networks have been synthesized by varying the central metal atoms to cobalt, nickel and copper. Their selectivities for CO2 capture over N2 and Ar are found to be enhanced as the heats of adsorption for CO2 are increased in the order of Co, Ni and Cu, while the pore structures are well maintained.
Collapse
Affiliation(s)
- Hwa Seob Choi
- Graduated School of EEWS, Korea Advanced Institute of Science and Technology, 373-1 Guseong Dong, Yuseong Gu, Daejeon 305-701, Republic of Korea.
| | | | | | | | | |
Collapse
|
22
|
Quan Q, Szeto SSW, Law HCH, Zhang Z, Wang Y, Chu IK. Fully Automated Multidimensional Reversed-Phase Liquid Chromatography with Tandem Anion/Cation Exchange Columns for Simultaneous Global Endogenous Tyrosine Nitration Detection, Integral Membrane Protein Characterization, and Quantitative Proteomics Mapping in Cerebral Infarcts. Anal Chem 2015; 87:10015-24. [DOI: 10.1021/acs.analchem.5b02619] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Quan Quan
- Department
of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Samuel S. W. Szeto
- Department
of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Henry C. H. Law
- Department
of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Zaijun Zhang
- Institute
of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic
Constituents of Traditional Chinese Medicine, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yuqiang Wang
- Institute
of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic
Constituents of Traditional Chinese Medicine, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ivan K. Chu
- Department
of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
23
|
Affiliation(s)
- Lauren J. Abbott
- Department
of Materials Science
and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Coray M. Colina
- Department
of Materials Science
and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
24
|
Saifutdinov BR, Davankov VA, Il’in MM. Thermodynamics of the sorption of 1,3,4-oxadiazole and 1,2,4,5-tetrazine derivatives from solutions on hypercrosslinked polystyrene. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2014. [DOI: 10.1134/s0036024414030224] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Rochman CM, Manzano C, Hentschel BT, Massey Simonich SL, Hoh E. Polystyrene plastic: a source and sink for polycyclic aromatic hydrocarbons in the marine environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:13976-84. [PMID: 24341360 PMCID: PMC4140420 DOI: 10.1021/es403605f] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) on virgin polystyrene (PS) and PS marine debris led us to examine PS as a source and sink for PAHs in the marine environment. At two locations in San Diego Bay, we measured sorption of PAHs to PS pellets, sampling at 0, 1, 3, 6, 9, and 12 months. We detected 25 PAHs using a new analytical method with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. Several congeners were detected on samples before deployment. After deployment, some concentrations decreased (1,3-dimethylnaphthalene and 2,6-methylnaphthalene), while most increased [2-methylanthracene and all parent PAHs (PPAHs), except fluorene and fluoranthene], suggesting that PS debris is a source and sink for PAHs. When sorbed concentrations of PPAHs on PS are compared to the five most common polymers [polyethylene terephthalate (PET), high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), and polypropylene (PP)], PS sorbed greater concentrations than PP, PET, and PVC, similar to HDPE and LDPE. Most strikingly, at 0 months, PPAHs on PS ranged from 8 to 200 times greater than on PET, HDPE, PVC, LDPE, and PP. The combination of greater PAHs in virgin pellets and large sorption suggests that PS may pose a greater risk of exposure to PAHs upon ingestion.
Collapse
Affiliation(s)
- Chelsea M. Rochman
- Department of Biology and Coastal and Marine Institute, San Diego State University, San Diego, CA
| | - Carlos Manzano
- Department of Chemistry, Oregon State University, Corvallis, OR
| | - Brian T. Hentschel
- Department of Biology and Coastal and Marine Institute, San Diego State University, San Diego, CA
| | - Staci L. Massey Simonich
- Department of Chemistry, Oregon State University, Corvallis, OR
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
| | - Eunha Hoh
- Graduate School of Public Health, San Diego State University, San Diego, CA
- Corresponding Author ()
| |
Collapse
|
26
|
Porous polymer monoliths: Morphology, porous properties, polymer nanoscale gel structure and their impact on chromatographic performance. J Chromatogr A 2013; 1287:39-58. [DOI: 10.1016/j.chroma.2012.11.016] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 11/02/2012] [Accepted: 11/06/2012] [Indexed: 11/20/2022]
|
27
|
Recent Development of Hypercrosslinked Microporous Organic Polymers. Macromol Rapid Commun 2013; 34:471-84. [DOI: 10.1002/marc.201200788] [Citation(s) in RCA: 319] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 12/30/2012] [Indexed: 11/07/2022]
|
28
|
Lyons RA, Hassett JP, Flach AM, Cabasso I. Development of thin layer polymers to concentrate and detect aquatic contaminants. J Appl Polym Sci 2012. [DOI: 10.1002/app.37857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
29
|
Prokopov SV, Kurbatova SV, Davankov VA, Il’in MA. Chromatographic retention of adamantylamidrazones and triazoles by octadecyl silica gel and hypercrosslinked polystyrenes from water-acetonitrile solutions. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2012. [DOI: 10.1134/s0036024412050299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Adsorption of aromatic compounds on porous covalent triazine-based framework. J Colloid Interface Sci 2012; 372:99-107. [DOI: 10.1016/j.jcis.2012.01.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/03/2012] [Accepted: 01/09/2012] [Indexed: 11/18/2022]
|
31
|
|
32
|
Zatirakha AV, Smolenkov AD, D’yachkov IA, Shpigun OA. The effect of alkylating agent on the efficiency and selectivity of new polymeric anion exchangers. ACTA ACUST UNITED AC 2011. [DOI: 10.3103/s0027131411050129] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Oro NE, Lucy CA. High performance liquid chromatographic separations of gas oil samples and their hydrotreated products using commercial normal phases. J Chromatogr A 2011; 1218:7788-95. [DOI: 10.1016/j.chroma.2011.08.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
|
34
|
Schwab MG, Crespy D, Feng X, Landfester K, Müllen K. Preparation of Microporous Melamine-based Polymer Networks in an Anhydrous High-Temperature Miniemulsion. Macromol Rapid Commun 2011; 32:1798-803. [DOI: 10.1002/marc.201100511] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Indexed: 11/09/2022]
|
35
|
Zatirakha AV, Smolenkov AD, Shpigun OA. Synthesis and chromatographic properties of new polymer-based anion exchangers. ACTA ACUST UNITED AC 2011. [DOI: 10.3103/s0027131411030138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Wiest LA, Jensen DS, Hung CH, Olsen RE, Davis RC, Vail MA, Dadson AE, Nesterenko PN, Linford MR. Pellicular Particles with Spherical Carbon Cores and Porous Nanodiamond/Polymer Shells for Reversed-Phase HPLC. Anal Chem 2011; 83:5488-501. [DOI: 10.1021/ac200436a] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Pavel N. Nesterenko
- Australian Centre for Research on Separation Science (ACROSS), School of Chemistry, University of Tasmania, Hobart 7001, Australia
| | | |
Collapse
|
37
|
Micropollutant sorption to membrane polymers: a review of mechanisms for estrogens. Adv Colloid Interface Sci 2011; 164:100-17. [PMID: 21106187 DOI: 10.1016/j.cis.2010.09.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 09/27/2010] [Accepted: 09/28/2010] [Indexed: 12/28/2022]
Abstract
Organic micropollutants such as estrogens occur in water in increasing quantities from predominantly anthropogenic sources. In water such micropollutants partition not only to surfaces such as membrane polymers but also to any other natural or treatment related surfaces. Such interactions are often observed as sorption in treatment processes and this phenomenon is exploited in activated carbon filtration, for example. Sorption is important for polymeric materials and this is used for the concentration of such micropollutants for analytical purposes in solid phase extraction. In membrane filtration the mechanism of micropollutant sorption is a relatively new discovery that was facilitated through new analytical techniques. This sorption plays an important role in micropollutant retention by membranes although mechanisms of interaction are to date not understood. This review is focused on sorption of estrogens on polymeric surfaces, specifically membrane polymers. Such sorption has been observed to a large extent with values of up to 1.2 ng/cm(2) measured. Sorption is dependent on the type of polymer, micropollutant characteristics, solution chemistry, membrane operating conditions as well as membrane morphology. Likely contributors to sorption are the surface roughness as well as the microporosity of such polymers. While retention-and/or reflection coefficient as well as solute to effective pore size ratio-controls the access of such micropollutants to the inner surface, pore size, porosity and thickness as well as morphology or shape of inner voids determines the available area for sorption. The interaction mechanisms are governed, most likely, by hydrophobic as well as solvation effects and interplay of molecular and supramolecular interactions such as hydrogen bonding, π-cation/anion interactions, π-π stacking, ion-dipole and dipole-dipole interactions, the extent of which is naturally dependent on micropollutant and polymer characteristics. Systematic investigations are required to identify and quantify both relative contributions and strength of such interactions and develop suitable surface characterisation tools. This is a difficult endeavour given the complexity of systems, the possibility of several interactions taking place simultaneously and the generally weaker forces involved.
Collapse
|
38
|
Martín CF, Stöckel E, Clowes R, Adams DJ, Cooper AI, Pis JJ, Rubiera F, Pevida C. Hypercrosslinked organic polymer networks as potential adsorbents for pre-combustion CO2 capture. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm03534c] [Citation(s) in RCA: 273] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Nischang I, Teasdale I, Brüggemann O. Porous polymer monoliths for small molecule separations: advancements and limitations. Anal Bioanal Chem 2010; 400:2289-304. [DOI: 10.1007/s00216-010-4579-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 12/02/2010] [Indexed: 12/19/2022]
|
40
|
Urban J, Svec F, Fréchet JM. Hypercrosslinking: new approach to porous polymer monolithic capillary columns with large surface area for the highly efficient separation of small molecules. J Chromatogr A 2010; 1217:8212-21. [PMID: 21092973 PMCID: PMC3022388 DOI: 10.1016/j.chroma.2010.10.100] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/22/2010] [Accepted: 10/25/2010] [Indexed: 11/27/2022]
Abstract
Monolithic polymers with an unprecedented surface area of over 600 m(2)/g have been prepared from a poly(styrene-co-vinylbenzyl chloride-co-divinylbenzene) precursor monolith that was swollen in 1,2-dichloroethane and hypercrosslinked via Friedel-Crafts reaction catalyzed by ferric chloride. Both the composition of the reaction mixture used for the preparation of the precursor monolith and the conditions of the hypercrosslinking reaction have been varied using mathematical design of experiments and the optimized system validated. Hypercrosslinked monolithic capillary columns contain an array of small pores that make the column ideally suited for the high efficiency isocratic separations of small molecules such as uracil and alkylbenzenes with column efficiencies reproducibly exceeding 80,000 plates/m for retained compounds. The separation process could be accelerated while also improving peak shape through the use of higher temperatures and a ternary mobile phase consisting of acetonitrile, tetrahydrofuran, and water. As a result, seven compounds were well separated in less than 2 min. These columns also facilitate separations of peptide mixtures such as a tryptic digest of cytochrome c using a gradient elution mode which affords a sequence coverage of 93%. A 65 cm long hypercrosslinked capillary column used in size exclusion mode with tetrahydrofuran as the mobile phase afforded almost baseline separation of toluene and five polystyrene standards.
Collapse
Affiliation(s)
- Jiri Urban
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Frantisek Svec
- The Molecular Foundry, E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jean M.J. Fréchet
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- The Molecular Foundry, E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
41
|
Kochuk EV, Dmitrienko SG. Sorption of sulfanilamides on highly cross-linked polystyrene. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2010. [DOI: 10.1134/s0036024411010122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Nischang I, Teasdale I, Brüggemann O. Towards porous polymer monoliths for the efficient, retention-independent performance in the isocratic separation of small molecules by means of nano-liquid chromatography. J Chromatogr A 2010; 1217:7514-22. [DOI: 10.1016/j.chroma.2010.09.077] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/25/2010] [Accepted: 09/28/2010] [Indexed: 11/28/2022]
|
43
|
Comparison of hypercrosslinked polystyrene columns for the separation of nitrogen group-types in petroleum using High Performance Liquid Chromatography. J Chromatogr A 2010; 1217:6178-85. [DOI: 10.1016/j.chroma.2010.07.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/20/2010] [Accepted: 07/27/2010] [Indexed: 11/20/2022]
|
44
|
Lanin SN, Pashkova EB, Kovaleva NV, Lanina KS. Adsorption of water isotopomers H2O and D2O on hypercross-linked polystyrene MN-272. Russ Chem Bull 2010. [DOI: 10.1007/s11172-009-0085-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Liu Q, Wang L, Yu W, Xiao A, Yu H, Huo J. Hypercrosslinked polystyrene microspheres with bimodal pore size distribution and controllable macroporosity. J Appl Polym Sci 2010. [DOI: 10.1002/app.31422] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Li B, Huang X, Liang L, Tan B. Synthesis of uniform microporous polymer nanoparticles and their applications for hydrogen storage. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm01423k] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Grochowicz M, Gawdzik B, Bartnicki A. New tetrafunctional monomer 1,3-di(2-hydroxy-3-methacryloyloxypropoxy)benzene in the synthesis of porous microspheres. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/pola.23398] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
|
49
|
Valderrama C, Cortina J, Farran A, Gamisans X, de las Heras F. Kinetic study of acid red “dye” removal by activated carbon and hyper-cross-linked polymeric sorbents Macronet Hypersol MN200 and MN300. REACT FUNCT POLYM 2008. [DOI: 10.1016/j.reactfunctpolym.2007.11.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Valderrama C, Gamisans X, de las Heras F, Cortina J, Farrán A. Kinetics of polycyclic aromatic hydrocarbons removal using hyper-cross-linked polymeric sorbents Macronet Hypersol MN200. REACT FUNCT POLYM 2007. [DOI: 10.1016/j.reactfunctpolym.2007.07.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|