1
|
Treurniet S, Eekhoff EMW, Schmidt FN, Micha D, Busse B, Bravenboer N. A Clinical Perspective on Advanced Developments in Bone Biopsy Assessment in Rare Bone Disorders. Front Endocrinol (Lausanne) 2020; 11:399. [PMID: 32714279 PMCID: PMC7344330 DOI: 10.3389/fendo.2020.00399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/18/2020] [Indexed: 01/22/2023] Open
Abstract
Introduction: Bone biopsies have been obtained for many centuries and are one of the oldest known medical procedures in history. Despite the introduction of new noninvasive radiographic imaging techniques and genetic analyses, bone biopsies are still valuable in the diagnosis of bone diseases. Advanced techniques for the assessment of bone quality in bone biopsies, which have emerged during the last decades, allows in-depth tissue analyses beyond structural changes visible in bone histology. In this review, we give an overview of the application and advantages of the advanced techniques for the analysis of bone biopsies in the clinical setting of various rare metabolic bone diseases. Method: A systematic literature search on rare metabolic bone diseases and analyzing techniques of bone biopsies was performed in PubMed up to 2019 week 34. Results: Advanced techniques for the analysis of bone biopsies were described for rare metabolic bone disorders including Paget's disease of bone, osteogenesis imperfecta, fibrous dysplasia, Fibrodysplasia ossificans progressiva, PLS3 X-linked osteoporosis, Loeys-Diets syndrome, osteopetrosis, Erdheim-Chester disease, and Cherubism. A variety of advanced available analytical techniques were identified that may help to provide additional detail on cellular, structural, and compositional characteristics in rare bone diseases complementing classical histopathology. Discussion: To date, these techniques have only been used in research and not in daily clinical practice. Clinical application of bone quality assessment techniques depends upon several aspects such as availability of the technique in hospitals, the existence of reference data, and a cooperative network of researchers and clinicians. The evaluation of rare metabolic bone disorders requires a repertoire of different methods, owing to their distinct bone tissue characteristics. The broader use of bone material obtained from biopsies could provide much more information about pathophysiology or treatment options and establish bone biopsies as a valuable tool in rare metabolic bone diseases.
Collapse
Affiliation(s)
- Sanne Treurniet
- Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Elisabeth M. W. Eekhoff
- Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Felix N. Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dimitra Micha
- Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathalie Bravenboer
- Bone and Calcium Metabolism Lab, Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam Movement Sciences, Amsterdam, Netherlands
- *Correspondence: Nathalie Bravenboer
| |
Collapse
|
2
|
Lu Y, Ren X, Wang Y, Li T, Li F, Wang S, Xu C, Wu G, Li H, Li G, Zhao F, Wang Z, Mo X, Han J. Mutational and structural characteristics of four novel heterozygous C-propeptide mutations in the proα1(I) collagen gene in Chinese osteogenesis imperfecta patients. Clin Endocrinol (Oxf) 2014; 80:524-31. [PMID: 24147872 DOI: 10.1111/cen.12354] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/22/2013] [Accepted: 09/29/2013] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Osteogenesis imperfecta (OI) with C-propeptide mutations in proα1(I) collagen gene are rarely reported. We report four novel C-propeptide mutations in COL1A1 gene from Chinese OI patients. METHODS Clinical characteristics and radiographic findings were described for four OI patients with C-propeptide mutations in proα1(I) collagen gene. Mutations were identified by traditional DNA sequencing based on PCR. The locations of mutations were mapped, and in silico prediction was conducted to analyse their effects on protein structure. Histology studies of skin, bone and muscle tissues were performed. RESULTS All four C-propeptide heterozygous mutations identified were in the COL1A1 gene. Heterozygous mutation of c.4021C>T (p.Q1341X) disrupted the chain recognition sequences and was found in patients with type IV OI. Mutations of c.3893C>A (p.T1298N) and c.3897C>A (p.C1299X) impeded the formation of disulphide bonds and were associated with type IV OI phenotype. Missense mutation of c.3835A>C (p.N1279H) disrupted Ca(2+) binding and led to a severe type III OI phenotype. In silico programs predicted damaging effects for the patients with type III OI and the creation of an exonic splicing enhancer hexamer sequence for the type IV patients. Expansion of the bone marrow cavity and disorganization of osteocyte alignment was evident in bone specimens; and muscle atrophy and enlargement of intramuscular connective tissue were found in muscle specimens. CONCLUSIONS Four novel C-propeptide mutations in proα1(I) collagen gene were identified in Chinese OI patients, and their clinical severity ranged from moderate type IV to severe type III. In silico prediction of the mutation effect and histological characteristics of tissue specimens was in accordance with the OI phenotypes.
Collapse
Affiliation(s)
- Yanqin Lu
- Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Modern Medicine and Technology of Shandong Province, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Key Laboratory for Virology of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, Jinan, China; School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Pazzaglia UE, Congiu T, Brunelli PC, Magnano L, Benetti A. The long bone deformity of osteogenesis imperfecta III: analysis of structural changes carried out with scanning electron microscopic morphometry. Calcif Tissue Int 2013; 93:453-61. [PMID: 23929220 DOI: 10.1007/s00223-013-9771-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
Abstract
The wedges of the mid-diaphyseal osteotomies carried out to correct the femoral and/or tibial native deformity in type III osteogenesis imperfecta (OI III) were used to study the remodeling patterns and lamellar organization at the level of the major deformity. Histology and scanning electron microscopy (SEM) morphology showed abnormal cortical remodeling characterized by the failure to form a cylinder of compact bone with a regular marrow canal. Atypical, flattened, and large resorption lacunae with a wide resorption front on one side and systems of parallel lamellae on the opposite side were observed, resembling those formerly reported as drifting osteons. SEM morphometry documented a higher percentage of nonossified vascular/resorption area (44.3 %) in OI than in controls (13.6 %), a lower density of secondary osteons, and lower values for the parameters expressing the individual osteon size. The mean osteon total area, the mean central canal area, and the mean osteon bone area of two selected, randomized populations of secondary osteons were significantly higher (p < 0.001, p = 0.028, and p < 0.001, respectively) in control bones than in OI. The mean ossified matrix area was not significantly different, but the mean secondary osteon number and mean density were higher in controls (both p < 0.001). Osteon wedges were carried out to correct the native deformity of OI III and morphologic analysis suggested that the abnormal remodeling pattern (with "drifting osteons") may result from the altered load and tensile stresses on the deformed tubular bones.
Collapse
Affiliation(s)
- Ugo E Pazzaglia
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy,
| | | | | | | | | |
Collapse
|
4
|
The osteocyte lineage. Arch Biochem Biophys 2008; 473:106-11. [DOI: 10.1016/j.abb.2008.04.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/10/2008] [Accepted: 04/10/2008] [Indexed: 11/23/2022]
|
5
|
Abstract
Osteocytes, the most abundant cell type in bone, remain the least characterized. Several theories have been proposed regarding their function, including osteolysis, sensing the strains produced in response to mechanical loading of bones, and producing signals that affect the function of osteoblasts and osteoclasts and hence, bone turnover. This review also discusses the role of osteocyte apoptosis in targeted bone remodeling and proposes that the occurrence of osteocyte apoptosis is consistent with the description of apoptosis as an essential homeostatic mechanism for the healthy maintenance of tissues.
Collapse
Affiliation(s)
- Giolanta Kogianni
- Musculoskeletal Tissue Engineering Collaboration (MTEC), University of Edinburgh Medical School, The Chancellor's Building, Edinburgh EH16 4SB, UK
| | | |
Collapse
|
6
|
Abstract
Osteocytes play an important role in signaling within bone. Communication of osteocytes with each other and with bone lining cells may have a function in mineral homeostasis and mechanotransduction. However, very little is known of the expression of ion channels in these cells. Using the whole-cell patch-clamp technique, we have detected three types of K(+) currents in the mouse osteocyte-like cell line MLO-Y4. The most commonly observed current (48% of cells) activated rapidly (20 msec) in response to depolarizing steps from -40 mV and exhibited voltage-dependent inactivation. The current was inhibited by 20 mmol/L tetraethyl ammonium (TEA) and abolished by intracellular 2 mmol/L 4-aminopyridine (4-AP). Biophysical and pharmacological characteristics of the current differed from those of inactivating K(+) currents in osteoblastic cells. In 22% of cells, a slowly activating, voltage-activated current was observed (threshold at 20-30 mV). This current was TEA insensitive, was abolished by intracellular application of 2 mmol/L 4-AP, and was strongly inhibited by apamin, a selective inhibitor of small conductance (SK) Ca(2+)-activated K(+) channels. A third current developed during whole-cell dialysis (37% of cells). This current showed little voltage sensitivity. It was abolished by intracellular application of 2 mmol/L 4-AP, high-extracellular Ba(2+) (108 mmol/L), or by inclusion of ATP in the intracellular solution, but was insensitive to TEA, apamin, Cs(+), and glibenclamide. None of these currents was affected by replacement of chloride with acetate in the bath or pipette salines. Reverse-transcription polymerase chain reaction confirmed the presence of mRNA for the types 1 and 2 SK channels, but message for the large conductance (BK) Ca(2+)-activated K(+) channel was not detected in these cells. Message for the sulphonylurea receptor SUR2, a subunit of glibenclamide-insensitive ATP-dependent K(+) channels (K(ATP)), was also detected, but the glibenclamide-sensitive SUR1 subunit was not. These data are the first descriptions of SK- and ATP-sensitive, glibenclamide-insensitive channels in cells of osteoblastic lineage. Our findings are consistent with a change in K(+) channel expression during differentiation from osteoblast to osteocyte. K(+) channels of osteocytes will contribute to maintenance of the cell membrane potential and thus may participate in mechanosensitivity and osteocyte intercellular communication. In addition, they may be involved in homeostatic maintenance of the extracellular fluid occupying the periosteocytic space.
Collapse
Affiliation(s)
- Y Gu
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | |
Collapse
|
7
|
Sarathchandra P, Pope FM, Kayser MV, Ali SY. A light and electron microscopic study of osteogenesis imperfecta bone samples, with reference to collagen chemistry and clinical phenotype. J Pathol 2000; 192:385-95. [PMID: 11054723 DOI: 10.1002/1096-9896(2000)9999:9999<::aid-path704>3.0.co;2-u] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A detailed morphological study was carried out using light and electron microscopy on 36 bone specimens from patients suffering from osteogenesis imperfecta (OI) and 20 age- and site-matched control bone specimens. The findings were grouped into the clinical types of OI according to the Sillence classification. The morphological and ultrastructural alterations observed in OI bone correlate well with clinical severity. Thus, OI type I, the mildest type, showed the least abnormalities in bone ultrastructure. OI type IV closely resembled type I, with only minor abnormalities in the bone cells and osteoid. OI type III showed abnormalities in the structure and distribution of osteoid collagen fibrils, whilst OI type II, the lethal form, revealed many varied abnormalities such as thin cortical bone, sparse trabecular bone, increased numbers of osteoclasts and osteocytes, thin osteoid with thin collagen fibrils, and patchy mineralization.
Collapse
Affiliation(s)
- P Sarathchandra
- Department of Experimental Pathology, Institute of Orthopaedics (University of London), Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK.
| | | | | | | |
Collapse
|
8
|
Abstract
Osteogenesis imperfecta (OI) is a genetic disorder characterized by increased bone fragility and low bone mass. Four clinical types are commonly distinguished. Schematically, type I is the mildest phenotype, type II is usually lethal, type III is the most severe form compatible with postnatal survival, and type IV is moderately severe. Although mutations affecting collagen type I are responsible for the disease in most patients, the mechanisms by which the genetic defects cause abnormal bone development have not been well characterized. Therefore, we evaluated quantitative static and dynamic histomorphometric parameters in tetracycline-labeled iliac bone biopsies from 70 children, aged 1.5 to 13.5 years, with OI types I (n = 32), III (n = 11), and IV (n = 27). Results were compared with those of 27 age-matched controls without metabolic bone disease. Biopsy core width, cortical width, and cancellous bone volume were clearly decreased in all OI types. Decreased cancellous bone volume was due to a 41%-57% reduction in trabecular number and a 15%-27% lower trabecular thickness. Regression analyses revealed that trabecular number did not vary with age in either controls or OI patients, indicating that no trabecular loss occurred. The annual increase in trabecular thickness was 5.8 microm in controls and 3.6 microm in type I OI, whereas no trabecular thickening was evident in type III and IV OI. Wall thickness, which reflects the amount of bone formed during a remodeling cycle, was decreased by 14% in a subgroup of 17 type I OI patients, but was not determined in the other OI types. The remodeling balance was less positive in type I OI than in controls, and probably close to zero in types III and IV. Surface-based parameters of bone remodeling were increased in all OI types, indicating increased recruitment of remodeling units. No defect in matrix mineralization was found. In conclusion, there was evidence of defects in all three mechanisms, which normally lead to an increase in bone mass during childhood; that is, modeling of external bone size and shape, production of secondary trabeculae by endochondral ossification, and thickening of secondary trabeculae by remodeling. Thus, OI might be regarded as a disease in which a single genetic defect in the osteoblast interferes with multiple mechanisms that normally ensure adaptation of the skeleton to the increasing mechanical needs during growth.
Collapse
Affiliation(s)
- F Rauch
- Genetics Unit, Shriners Hospital, and the Departments of Surgery and Pediatrics, McGill University, Montréal, Canada
| | | | | | | |
Collapse
|