1
|
Kotov AA, Bazylev SS, Adashev VE, Shatskikh AS, Olenina LV. Drosophila as a Model System for Studying of the Evolution and Functional Specialization of the Y Chromosome. Int J Mol Sci 2022; 23:4184. [PMID: 35457001 PMCID: PMC9031259 DOI: 10.3390/ijms23084184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023] Open
Abstract
The Y chromosome is one of the sex chromosomes found in males of animals of different taxa, including insects and mammals. Among all chromosomes, the Y chromosome is characterized by a unique chromatin landscape undergoing dynamic evolutionary change. Being entirely heterochromatic, the Y chromosome as a rule preserves few functional genes, but is enriched in tandem repeats and transposons. Due to difficulties in the assembly of the highly repetitive Y chromosome sequence, deep analyses of Y chromosome evolution, structure, and functions are limited to a few species, one of them being Drosophila melanogaster. Despite Y chromosomes exhibiting high structural divergence between even closely related species, Y-linked genes have evolved convergently and are mainly associated with spermatogenesis-related activities. This indicates that male-specific selection is a dominant force shaping evolution of Y chromosomes across species. This review presents our analysis of current knowledge concerning Y chromosome functions, focusing on recent findings in Drosophila. Here we dissect the experimental and bioinformatics data about the Y chromosome accumulated to date in Drosophila species, providing comparative analysis with mammals, and discussing the relevance of our analysis to a wide range of eukaryotic organisms, including humans.
Collapse
Affiliation(s)
| | | | | | | | - Ludmila V. Olenina
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», 123182 Moscow, Russia; (A.A.K.); (S.S.B.); (V.E.A.); (A.S.S.)
| |
Collapse
|
2
|
Zhu L, Fukunaga R. RNA-binding protein Maca is crucial for gigantic male fertility factor gene expression, spermatogenesis, and male fertility, in Drosophila. PLoS Genet 2021; 17:e1009655. [PMID: 34181646 PMCID: PMC8248703 DOI: 10.1371/journal.pgen.1009655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/01/2021] [Accepted: 06/09/2021] [Indexed: 11/19/2022] Open
Abstract
During spermatogenesis, the process in which sperm for fertilization are produced from germline cells, gene expression is spatiotemporally highly regulated. In Drosophila, successful expression of extremely large male fertility factor genes on Y-chromosome spanning some megabases due to their gigantic intron sizes is crucial for spermatogenesis. Expression of such extremely large genes must be challenging, but the molecular mechanism that allows it remains unknown. Here we report that a novel RNA-binding protein Maca, which contains two RNA-recognition motifs, is crucial for this process. maca null mutant male flies exhibited a failure in the spermatid individualization process during spermatogenesis, lacked mature sperm, and were completely sterile, while maca mutant female flies were fully fertile. Proteomics and transcriptome analyses revealed that both protein and mRNA abundance of the gigantic male fertility factor genes kl-2, kl-3, and kl-5 (kl genes) are significantly decreased, where the decreases of kl-2 are particularly dramatic, in maca mutant testes. Splicing of the kl-3 transcripts was also dysregulated in maca mutant testes. All these physiological and molecular phenotypes were rescued by a maca transgene in the maca mutant background. Furthermore, we found that in the control genetic background, Maca is exclusively expressed in spermatocytes in testes and enriched at Y-loop A/C in the nucleus, where the kl-5 primary transcripts are localized. Our data suggest that Maca increases transcription processivity, promotes successful splicing of gigantic introns, and/or protects transcripts from premature degradation, of the kl genes. Our study identified a novel RNA-binding protein Maca that is crucial for successful expression of the gigantic male fertility factor genes, spermatogenesis, and male fertility.
Collapse
Affiliation(s)
- Li Zhu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
3
|
Satellite DNA-containing gigantic introns in a unique gene expression program during Drosophila spermatogenesis. PLoS Genet 2019; 15:e1008028. [PMID: 31071079 PMCID: PMC6508621 DOI: 10.1371/journal.pgen.1008028] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/18/2019] [Indexed: 11/19/2022] Open
Abstract
Intron gigantism, where genes contain megabase-sized introns, is observed across species, yet little is known about its purpose or regulation. Here we identify a unique gene expression program utilized for the proper expression of genes with intron gigantism. We find that two Drosophila genes with intron gigantism, kl-3 and kl-5, are transcribed in a spatiotemporal manner over the course of spermatocyte differentiation, which spans ~90 hours. The introns of these genes contain megabases of simple satellite DNA repeats that comprise over 99% of the gene loci, and these satellite-DNA containing introns are transcribed. We identify two RNA-binding proteins that specifically localize to kl-3 and kl-5 transcripts and are needed for the successful transcription or processing of these genes. We propose that genes with intron gigantism require a unique gene expression program, which may serve as a platform to regulate gene expression during cellular differentiation. Introns are non-coding elements of eukaryotic genes, often containing important regulatory sequences. Curiously, some genes contain introns so large that more than 99% of the gene locus is non-coding. One of the best-studied large genes, Dystrophin, a causative gene for Duchenne Muscular Dystrophy, spans 2.2Mb, only 11kb of which is coding. This phenomenon, ‘intron gigantism’, is observed across species, yet little is known about its purpose or regulation. Here we identify a unique gene expression program utilized for the proper expression of genes with intron gigantism using Drosophila spermatogenic genes as a model system. We show that the gigantic introns of these genes are transcribed in line with the exons, likely as a single transcript. We identify two RNA-binding proteins that specifically localize to the site of transcription and are needed for the successful transcription or processing of these genes. We propose that genes with intron gigantism require a unique gene expression program, which may serve as a platform to regulate gene expression during cellular differentiation.
Collapse
|
4
|
Subcellular Specialization and Organelle Behavior in Germ Cells. Genetics 2018; 208:19-51. [PMID: 29301947 DOI: 10.1534/genetics.117.300184] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 08/17/2017] [Indexed: 11/18/2022] Open
Abstract
Gametes, eggs and sperm, are the highly specialized cell types on which the development of new life solely depends. Although all cells share essential organelles, such as the ER (endoplasmic reticulum), Golgi, mitochondria, and centrosomes, germ cells display unique regulation and behavior of organelles during gametogenesis. These germ cell-specific functions of organelles serve critical roles in successful gamete production. In this chapter, I will review the behaviors and roles of organelles during germ cell differentiation.
Collapse
|
5
|
A young Drosophila duplicate gene plays essential roles in spermatogenesis by regulating several Y-linked male fertility genes. PLoS Genet 2010; 6:e1001255. [PMID: 21203494 PMCID: PMC3009665 DOI: 10.1371/journal.pgen.1001255] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/19/2010] [Indexed: 11/30/2022] Open
Abstract
Gene duplication is supposed to be the major source for genetic innovations. However, how a new duplicate gene acquires functions by integrating into a pathway and results in adaptively important phenotypes has remained largely unknown. Here, we investigated the biological roles and the underlying molecular mechanism of the young kep1 gene family in the Drosophila melanogaster species subgroup to understand the origin and evolution of new genes with new functions. Sequence and expression analysis demonstrates that one of the new duplicates, nsr (novel spermatogenesis regulator), exhibits positive selection signals and novel subcellular localization pattern. Targeted mutagenesis and whole-transcriptome sequencing analysis provide evidence that nsr is required for male reproduction associated with sperm individualization, coiling, and structural integrity of the sperm axoneme via regulation of several Y chromosome fertility genes post-transcriptionally. The absence of nsr-like expression pattern and the presence of the corresponding cis-regulatory elements of the parental gene kep1 in the pre-duplication species Drosophila yakuba indicate that kep1 might not be ancestrally required for male functions and that nsr possibly has experienced the neofunctionalization process, facilitated by changes of trans-regulatory repertories. These findings not only present a comprehensive picture about the evolution of a new duplicate gene but also show that recently originated duplicate genes can acquire multiple biological roles and establish novel functional pathways by regulating essential genes. Gene duplication has long been appreciated as a major source for new genes and new functions. Nevertheless, it is still a fascinating mystery how new duplicate genes are functionally integrated into the existing gene network and how they contribute to the novel functions of organisms at the pathway level. By studying the recently originated kep1 gene family in Drosophila melanogaster, we show that one of the young duplicate genes, nsr, has evolved important biological functions associated with male reproduction by regulating several essential fertility genes in the short evolutionary period after its birth. The evolutionary dynamics, biological roles, and the underlying molecular mechanism of nsr revealed in this study present a vivid and comprehensive example of how new genes acquire important biological functions and demonstrate that recently originated new genes can regulate pre-existing essential genes and create novel architectures of genetic pathways.
Collapse
|
6
|
Dubruille R, Orsi GA, Delabaere L, Cortier E, Couble P, Marais GAB, Loppin B. Specialization of a Drosophila capping protein essential for the protection of sperm telomeres. Curr Biol 2010; 20:2090-9. [PMID: 21093267 DOI: 10.1016/j.cub.2010.11.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 10/28/2010] [Accepted: 11/02/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND A critical function of telomeres is to prevent fusion of chromosome ends by the DNA repair machinery. In Drosophila somatic cells, assembly of the protecting capping complex at telomeres notably involves the recruitment of HOAP, HP1, and their recently identified partner, HipHop. We previously showed that the hiphop gene was duplicated before the radiation of the melanogaster subgroup of species, giving birth to K81, a unique paternal effect gene specifically expressed in the male germline. RESULTS Here we show that K81 specifically associates with telomeres during spermiogenesis, along with HOAP and HP1, and is retained on paternal chromosomes until zygote formation. In K81 mutant testes, capping proteins are not maintained at telomeres in differentiating spermatids, resulting in the transmission of uncapped paternal chromosomes that fail to properly divide during the first zygotic mitosis. Despite the apparent similar capping roles of K81 and HipHop in their respective domain of expression, we demonstrate by in vivo reciprocal complementation analyses that they are not interchangeable. Strikingly, HipHop appeared to be unable to maintain capping proteins at telomeres during the global chromatin remodeling of spermatid nuclei. CONCLUSIONS Our data demonstrate that K81 is essential for the maintenance of capping proteins at telomeres in postmeiotic male germ cells. In species of the melanogaster subgroup, HipHop and K81 have not only acquired complementary expression domains, they have also functionally diverged following the gene duplication event. We propose that K81 specialized in the maintenance of telomere protection in the highly peculiar chromatin environment of differentiating male gametes.
Collapse
|
7
|
Ceprani F, Raffa GD, Petrucci R, Piergentili R. Autosomal mutations affecting Y chromosome loops in Drosophila melanogaster. BMC Genet 2008; 9:32. [PMID: 18405358 PMCID: PMC2386818 DOI: 10.1186/1471-2156-9-32] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 04/11/2008] [Indexed: 11/17/2022] Open
Abstract
Background The Y chromosome of Drosophila melanogaster harbors several genes required for male fertility. The genes for these fertility factors are very large in size and contain conspicuous amounts of repetitive DNA and transposons. Three of these loci (ks-1, kl-3 and kl-5) have the ability to develop giant lampbrush-like loops in primary spermatocytes, a cytological manifestation of their active state in these cells. Y-loops bind a number of non-Y encoded proteins, but the mechanisms regulating their development and their specific functions are still to be elucidated. Results Here we report the results of a screen of 726 male sterile lines to identify novel autosomal genes controlling Y-loop function. We analyzed mutant testis preparations both in vivo and by immunofluorescence using antibodies directed against Y-loop-associated proteins. This screen enabled us to isolate 17 mutations at 15 loci whose wild-type function is required for proper Y-loop morphogenesis. Six of these loci are likely to specifically control loop development, while the others display pleiotropic effects on both loops and meiotic processes such as spermiogenesis, sperm development and maturation. We also determined the map position of the mutations affecting exclusively Y-loop morphology. Conclusion Our cytological screening permitted us to identify novel genetic functions required for male spermatogenesis, some of which show pleiotropic effects. Analysis of these mutations also shows that loop development can be uncoupled from meiosis progression. These data represent a useful framework for the characterization of Y-loop development at a molecular level and for the study of the genetic control of heterochromatin.
Collapse
Affiliation(s)
- Francesca Ceprani
- Dipartimento di Genetica e Biologia Molecolare, Sapienza - Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | |
Collapse
|
8
|
Piergentili R. Evolutionary conservation of lampbrush-like loops in drosophilids. BMC Cell Biol 2007; 8:35. [PMID: 17697358 PMCID: PMC1978495 DOI: 10.1186/1471-2121-8-35] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 08/14/2007] [Indexed: 12/02/2022] Open
Abstract
Background Loopin-1 is an abundant, male germ line specific protein of Drosophila melanogaster. The polyclonal antibody T53-F1 specifically recognizes Loopin-1 and enables its visualization on the Y-chromosome lampbrush-like loop named kl-3 during primary spermatocyte development, as well as on sperm tails. In order to test lampbrush-like loop evolutionary conservation, extensive phase-contrast microscopy and immunostaining with T53-F1 antibody was performed in other drosophilids scattered along their genealogical tree. Results In the male germ line of all species tested there are cells showing giant nuclei and intranuclear structures similar to those of Drosophila melanogaster primary spermatocytes. Moreover, the antibody T53-F1 recognizes intranuclear structures in primary spermatocytes of all drosophilids analyzed. Interestingly, the extent and conformation of the staining pattern is species-specific. In addition, the intense staining of sperm tails in all species suggests that the terminal localization of Loopin-1 and its orthologues is conserved. A comparison of these cytological data and the data coming from the literature about sperm length, amount of sperm tail entering the egg during fertilization, shape and extent of both loops and primary spermatocyte nuclei, seems to exclude direct relationships among these parameters. Conclusion Taken together, the data reported strongly suggest that lampbrush-like loops are a conserved feature of primary spermatocyte nuclei in many, if not all, drosophilids. Moreover, the conserved pattern of the T53-F1 immunostaining indicates that a Loopin-1-like protein is present in all the species analyzed, whose localization on lampbrush-like loops and sperm tails during spermatogenesis is evolutionary conserved.
Collapse
Affiliation(s)
- Roberto Piergentili
- Dipartimento di Genetica e Biologia Molecolare, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
9
|
Hempel LU, Rathke C, Raja SJ, Renkawitz-Pohl R. InDrosophila,don juananddon juan likeencode proteins of the spermatid nucleus and the flagellum and both are regulated at the transcriptional level by the TAFII80 cannonball while translational repression is achieved by distinct elements. Dev Dyn 2006; 235:1053-64. [PMID: 16477641 DOI: 10.1002/dvdy.20698] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The genes don juan (dj) and don juan like (djl) encode basic proteins expressed in the male germline. Both proteins show a similar expression pattern being localized in the sperm heads during chromatin condensation and along the flagella. Prematurely expressed Don Juan-eGFP and Myc-Don Juan Like localize to the cytoplasm of spermatocytes and in mitochondrial derivatives from the nebenkern stage onward suggesting that both proteins associate with the mitochondria along the flagella in elongated spermatids. Premature expression of Myc-Don Juan Like does not impair spermatogenesis where-as Don Juan-eGFP when prematurely expressed causes male sterility as spermatids fail to individualize. In spite of the sequence identity of 72% on the nucleotide level and 42% on the protein level, the presumptive promoter regions and the untranslated regions of the mRNA are diverged. Our in vivo analysis revealed that don juan and don juan like are transcriptionally and translationally controlled by distinct short cis regulatory regions. Transcription of don juan and don juan like depends on the male germ line specific TAF(II)80, Cannonball (Can). Translational repression elements for both mRNAs are localized in the 5' UTR and are capable to form distinct secondary structures in close proximity to the translational initiation codon.
Collapse
Affiliation(s)
- Leonie U Hempel
- Philipps-Universität Marburg, Fachbereich Biologie, Entwicklungsbiologie, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany
| | | | | | | |
Collapse
|
10
|
Jayaramaiah Raja S, Renkawitz-Pohl R. Replacement by Drosophila melanogaster protamines and Mst77F of histones during chromatin condensation in late spermatids and role of sesame in the removal of these proteins from the male pronucleus. Mol Cell Biol 2005; 25:6165-77. [PMID: 15988027 PMCID: PMC1168805 DOI: 10.1128/mcb.25.14.6165-6177.2005] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 03/21/2005] [Accepted: 04/15/2005] [Indexed: 11/20/2022] Open
Abstract
Chromatin condensation is a typical feature of sperm cells. During mammalian spermiogenesis, histones are first replaced by transition proteins and then by protamines, while little is known for Drosophila melanogaster. Here we characterize three genes in the fly genome, Mst35Ba, Mst35Bb, and Mst77F. The results indicate that Mst35Ba and Mst35Bb encode dProtA and dProtB, respectively. These are considerably larger than mammalian protamines, but, as in mammals, both protamines contain typical cysteine/arginine clusters. Mst77F encodes a linker histone-like protein showing significant similarity to mammalian HILS1 protein. ProtamineA-enhanced green fluorescent protein (eGFP), ProtamineB-eGFP, and Mst77F-eGFP carrying Drosophila lines show that these proteins become the important chromosomal protein components of elongating spermatids, and His2AvDGFP vanishes. Mst77F mutants [ms(3)nc3] are characterized by small round nuclei and are sterile as males. These data suggest the major features of chromatin condensation in Drosophila spermatogenesis correspond to those in mammals. During early fertilization steps, the paternal pronucleus still contains protamines and Mst77F but regains a nucleosomal conformation before zygote formation. In eggs laid by sesame-deficient females, the paternal pronucleus remains in a protamine-based chromatin status but Mst77F-eGFP is removed, suggesting that the sesame gene product is essential for removal of protamines while Mst77F removal is independent of Sesame.
Collapse
Affiliation(s)
- Sunil Jayaramaiah Raja
- Philipps-Universität Marburg, Fachbereich Biologie, Entwicklungsbiologie, 35043 Marburg, Germany
| | | |
Collapse
|
11
|
Loppin B, Lepetit D, Dorus S, Couble P, Karr TL. Origin and neofunctionalization of a Drosophila paternal effect gene essential for zygote viability. Curr Biol 2005; 15:87-93. [PMID: 15668163 DOI: 10.1016/j.cub.2004.12.071] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2004] [Revised: 11/18/2004] [Accepted: 11/19/2004] [Indexed: 01/22/2023]
Abstract
BACKGROUND Although evolutionary novelty by gene duplication is well established, the origin and maintenance of essential genes that provide entirely new functions (neofunctionalization) is still largely unknown. Drosophila is a good model for the search of genes that are young enough to allow deciphering the molecular details of their evolutionary history. Recent years have seen increased interest in genes specifically required for male fertility because they often evolve rapidly. A special class of genes affecting male fertility, the paternal effect genes, have also become a focus of study to geneticists and reproductive biologists interested in fertilization and sperm-egg interactions. RESULTS Using molecular genetics and the annotated Drosophila melanogaster genome, we identified CG14251 as the Drosophila paternal effect gene, ms(3)K81 (K81). This assignment was subsequently confirmed by P-element rescue of K81. A search for orthologous K81 sequences revealed that the distribution of K81 is surprisingly restricted to the 9 species comprising the melanogaster subgroup. Phylogenetic analyses indicate that K81 arose through duplication, most likely retroposition, of a ubiquitously expressed gene before the radiation of the melanogaster subgroup, followed by a period of rapid divergence and acquisition of a critical male germline-specific function. Interestingly, K81 has adopted the expression profile of a flanking gene suggesting that transcriptional coregulation may have been important in the neofunctionalization of K81. CONCLUSION We present a detailed case history of the origin and evolution of a new essential gene and, in so doing, provide the first molecular identification of a Drosophila paternal effect gene, ms(3)K81 (K81).
Collapse
Affiliation(s)
- Benjamin Loppin
- Department of Biology and Biochemistry, University of Bath, 4 South Building, Claverton Down, Bath BA2 7AY, United Kingdom.
| | | | | | | | | |
Collapse
|
12
|
Zhang YQ, Matthies HJG, Mancuso J, Andrews HK, Woodruff E, Friedman D, Broadie K. The Drosophila fragile X-related gene regulates axoneme differentiation during spermatogenesis. Dev Biol 2004; 270:290-307. [PMID: 15183715 DOI: 10.1016/j.ydbio.2004.02.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Revised: 02/02/2004] [Accepted: 02/12/2004] [Indexed: 10/26/2022]
Abstract
Macroorchidism (i.e., enlarged testicles) and mental retardation are the two hallmark symptoms of Fragile X syndrome (FraX). The disease is caused by loss of fragile X mental retardation protein (FMRP), an RNA-binding translational regulator. We previously established a FraX model in Drosophila, showing that the fly FMRP homologue, dFXR, acts as a negative translational regulator of microtubule-associated Futsch to control stability of the microtubule cytoskeleton during nervous system development. Here, we investigate dFXR function in the testes. Male dfxr null mutants have the enlarged testes characteristic of the disease and are nearly sterile (>90% reduced male fecundity). dFXR protein is highly enriched in Drosophila testes, particularly in spermatogenic cells during the early stages of spermatogenesis. Cytological analyses reveal that spermatogenesis is arrested specifically in late-stage spermatid differentiation following individualization. Ultrastructurally, dfxr mutants lose specifically the central pair microtubules in the sperm tail axoneme. The frequency of central pair microtubule loss becomes progressively greater as spermatogenesis progresses, suggesting that dFXR regulates microtubule stability. Proteomic analyses reveal that chaperones Hsp60B-, Hsp68-, Hsp90-related protein TRAP1, and other proteins have altered expression in dfxr mutant testes. Taken together with our previous nervous system results, these data suggest a common model in which dFXR regulates microtubule stability in both synaptogenesis in the nervous system and spermatogenesis in the testes. The characterization of dfxr function in the testes paves the way to genetic screens for modifiers of dfxr-induced male sterility, as a means to efficiently dissect FMRP-mediated mechanisms.
Collapse
Affiliation(s)
- Yong Q Zhang
- Department of Biological Sciences, Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235-1634, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Blümer N, Schreiter K, Hempel L, Santel A, Hollmann M, Schäfer MA, Renkawitz-Pohl R. A new translational repression element and unusual transcriptional control regulate expression of don juan during Drosophila spermatogenesis. Mech Dev 2002; 110:97-112. [PMID: 11744372 DOI: 10.1016/s0925-4773(01)00577-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Drosophila don juan (dj) gene encodes a basic protein that is expressed solely in the male germline and shows structural similarities to the linker histone H1. Don Juan is located in two different subcellular structures: in the nucleus during the phase of chromatin condensation and later in the mitochondrial derivatives starting with spermatid individualization. The don juan gene is transcribed in primary spermatocytes under the control of 23 bp upstream in combination with downstream sequences. During meiotic stages and in early spermatid stages don juan mRNA is translationally repressed for several days. Analysis of male sterile mutants which fail to undergo meiosis shows that release of dj mRNA from translational repression is independent of meiosis. In gel retardation assays 60 nucleotides at the end of the dj leader form four major complexes with proteins that were extracted from testes but not with protein extracts from ovaries. Transformation studies prove that in vivo 35 bp within that region of the dj mRNA is essential to confer translational repression. UV cross-linking studies show that a 62 kDa protein specifically binds to the same region within the 5' untranslated region. The dj translational repression element, TRE, is distinct from the translational control element, TCE, described earlier for all members of the Mst(3)CGP gene family. Moreover, expression studies in several male sterile mutants reveal that don juan mRNA is translated in earlier developmental stages during sperm morphogenesis than the Mst(3)CGP mRNAs. This proves that translational activation of dormant mRNAs in spermatogenesis occurs at different time-points which are characteristic for each gene, an essential feature for coordinated sperm morphogenesis.
Collapse
Affiliation(s)
- Nicole Blümer
- FB Biologie, Entwicklungsbiologie, Philipps-Universität Marburg, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Rajendra TK, Prasanth KV, Lakhotia SC. Male sterility associated with overexpression of the noncoding hsromega gene in cyst cells of testis of Drosophila melanogaster. J Genet 2001; 80:97-110. [PMID: 11910129 DOI: 10.1007/bf02728335] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Of the several noncoding transcripts produced by the hsromega gene of Drosophila melanogaster, the nucleus-limited >10-kb hsromega-n transcript colocalizes with heterogeneous nuclear RNA binding proteins (hnRNPs) to form fine nucleoplasmic omega speckles. Our earlier studies suggested that the noncoding hsromega-n transcripts dynamically regulate the distribution of hnRNPs in active (chromatin bound) and inactive (in omega speckles) compartments. Here we show that a P transposon insertion in this gene's promoter (at -130 bp) in the hsromega05421; enhancer-trap line had no effect on viability or phenotype of males or females, but the insertion-homozygous males were sterile. Testes of hsromega05421; homozygous flies contained nonmotile sperms while their seminal vesicles were empty. RNA:RNA in situ hybridization showed that the somatic cyst cells in testes of the mutant male flies contained significantly higher amounts of hsromega-n transcripts, and unlike the characteristic fine omega speckles in other cell types they displayed large clusters of omega speckles as typically seen after heat shock. Two of the hnRNPs, viz. HRB87F and Hrb57A, which are expressed in cyst cells, also formed large clusters in these cells in parallel with the hsromega-n transcripts. A complete excision of the P transposon insertion restored male fertility as well as the fine-speckled pattern of omega speckles in the cyst cells. The in situ distribution patterns of these two hnRNPs and several other RNA-binding proteins (Hrp40, Hrb57A, S5, Sxl, SRp55 and Rb97D) were not affected by hsromega mutation in any of the meiotic stages in adult testes. The present studies, however, revealed an unexpected presence (in wild-type as well as mutant) of the functional form of Sxl in primary spermatocytes and an unusual distribution of HRB87F along the retracting spindle during anaphase telophase of the first meiotic division. It appears that the P transposon insertion in the promoter region causes a misregulated overexpression of hsromega in cyst cells, which in turn results in excessive sequestration of hnRNPs and formation of large clusters of omega speckles in these cell nuclei. The consequent limiting availability of hnRNPs is likely to trans-dominantly affect processing of other pre-mRNAs in cyst cells. We suggest that a compromise in the activity of cyst cells due to the aberrant hnRNP distribution is responsible for the failure of individualization of sperms in hsromega05421; mutant testes. These results further support a significant role of the noncoding hsromega-n transcripts in basic cellular activities, namely regulation of the availability of hnRNPs in active (chromatin bound) and inactive (in omega speckles) compartments.
Collapse
Affiliation(s)
- T K Rajendra
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India
| | | | | |
Collapse
|
15
|
Lu AQ, Beckingham K. Androcam, a Drosophila calmodulin-related protein, is expressed specifically in the testis and decorates loop kl-3 of the Y chromosome. Mech Dev 2000; 94:171-81. [PMID: 10842068 DOI: 10.1016/s0925-4773(00)00262-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Drosophila genome encodes a protein that is 68% identical to Drosophila calmodulin (Cam). We show here that this Cam-related gene is specifically expressed in the germ-line of the testis, leading to the name Androcam (Acam). Early in spermatogenesis Acam accumulates on one of the chromatin loops of the Y chromosome, kl-3. This association with kl-3 may indicate an RNA processing-related role for Acam and/or could reflect an unusual storage/assembly function hypothesized for the Y loops. After meiosis Acam is detectable in developing sperm tail cytoplasm, where at least some of the protein is not tightly associated with tubulin. Late in spermiogenesis, some Acam staining overlaps the periphery of the investment cones, actin-containing structures hypothesized to support the motor function for cytoplasmic stripping of the tail. Acam cannot be detected in mature sperm by immunolocalization, but immunoblotting established that Acam is present in sperm stored in mated females, suggesting epitope masking during final maturation. Proteins more related to Acam than Cam are present in the testes of other Drosophila species and a mammalian species, the mouse.
Collapse
Affiliation(s)
- A Q Lu
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | |
Collapse
|
16
|
Hochstenbach R, Hackstein JH. The comparative genetics of human spermatogenesis: clues from flies and other model organisms. Results Probl Cell Differ 2000; 28:271-98. [PMID: 10626302 DOI: 10.1007/978-3-540-48461-5_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- R Hochstenbach
- Department of Medical Genetics, University Medical Center, Utrecht, The Netherlands
| | | |
Collapse
|
17
|
Venables JP, Eperon I. The roles of RNA-binding proteins in spermatogenesis and male infertility. Curr Opin Genet Dev 1999; 9:346-54. [PMID: 10377282 DOI: 10.1016/s0959-437x(99)80052-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
RNA-binding proteins are essential for spermatogenesis: they are required in the nucleus of germ cells, for the production of specific mRNA isoforms, and in the cytoplasm - where proteins required for chromatin condensation and for changes in cell morphology are translated long after transcription ceases. Some of the RNA targets and the RNA-binding proteins themselves have been identified recently. Both nuclear and cytoplasmic proteins are affected in examples of azoospermia in men.
Collapse
Affiliation(s)
- J P Venables
- Department of Biochemistry University of Leicester University Road, Leicester, LE1 7RH, UK.
| | | |
Collapse
|
18
|
Cheng MH, Maines JZ, Wasserman SA. Biphasic subcellular localization of the DAZL-related protein boule in Drosophila spermatogenesis. Dev Biol 1998; 204:567-76. [PMID: 9882490 DOI: 10.1006/dbio.1998.9098] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Drosophila boule gene is expressed exclusively in the male germline and encodes an RNA binding protein closely related to the mammalian fertility factors encoded by the DAZ (Deleted in Azoospermia) and DAZL (DAZ-like) genes. Mutation of boule blocks both meiotic divisions. Differentiation nonetheless continues, resulting in tetraploid spermatids that fail to mature into sperm. We have found that Boule localizes premeiotically to a perinucleolar region and then translocates to the cytoplasm at the onset of meiosis. We show that deletion of the Y chromosome ks-1 fertility locus eliminates Boule nuclear localization, although it does not perturb entry into meiosis. Based on these observations we propose that Boule acts in the cytoplasm to regulate the stability or translation of messenger RNA encoding an essential meiotic factor.
Collapse
Affiliation(s)
- M H Cheng
- Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, 75235-9148, USA
| | | | | |
Collapse
|