1
|
Ryzhkova EP. Alternative enzymes as a special strategy for the adaptation of procaryotic organisms (Review). APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817050131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Borovok I, Kreisberg-Zakarin R, Yanko M, Schreiber R, Myslovati M, Aslund F, Holmgren A, Cohen G, Aharonowitz Y. Streptomyces spp. contain class Ia and class II ribonucleotide reductases: expression analysis of the genes in vegetative growth. MICROBIOLOGY (READING, ENGLAND) 2002; 148:391-404. [PMID: 11832503 DOI: 10.1099/00221287-148-2-391] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Genes encoding two ribonucleotide reductases (RNRs) were identified in members of the genus Streptomyces. One gene, nrdJ, encoded an oligomeric protein comprising four identical subunits each with a molecular mass of approximately 108 kDa. The activity of this protein depended on the presence of 5'-deoxyadenosylcobalamine (coenzyme B12), establishing it as a class II RNR. The Streptomyces clavuligerus nrdJ gene was cloned, using internal peptide sequences from the purified protein, and was found to encode a polypeptide of 961 aa. Molecular phylogenetic analysis showed that the S. clavuligerus class II RNR shares significant similarity with most other bacterial and archaeal class II RNRs. Two other genes, nrdA and nrdB, were initially identified in the Streptomyces coelicolor genome database in unannotated ORFs as encoding a class Ia RNR. Southern analysis demonstrated that the nrdAB genes were present in different Streptomyces spp. The S. coelicolor nrdAB genes were cloned and expressed in Escherichia coli, and the recombinant proteins were shown to represent a class I RNR. It was shown, using quantitative real-time PCR, that the S. clavuligerus class Ia and class II RNR genes were differentially transcribed during vegetative growth. The copy number of the class II nrdJ transcripts was approximately constant throughout the exponential phase of vegetative growth (3-5x10(5) copies per 400 ng total RNA after reverse transcription). In contrast, the copy number of the class Ia nrdAB transcripts was some 10- to 20-fold less than that of nrdJ in the early-exponential growth phase (2.8x10(4) copies), and decreased markedly at the mid-exponential (4x10(3) copies) and late-exponential phases (1.1x10(3) copies) of growth. A possible role for the involvement of two RNRs during vegetative growth is discussed.
Collapse
Affiliation(s)
- Ilya Borovok
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel1
| | - Rachel Kreisberg-Zakarin
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel1
| | - Michaela Yanko
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel1
| | - Rachel Schreiber
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel1
| | - Margarita Myslovati
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel1
| | - Fredrik Aslund
- Department of Biochemistry 1, Medical Nobel Institute, MBB, Karolinska Institutet, S-17177 Stockholm, Sweden2
| | - Arne Holmgren
- Department of Biochemistry 1, Medical Nobel Institute, MBB, Karolinska Institutet, S-17177 Stockholm, Sweden2
| | - Gerald Cohen
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel1
| | - Yair Aharonowitz
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel1
| |
Collapse
|
3
|
Manganese-dependent ribonucleotide reductase ofPropionibacterium freudenreichii subsp.shermanii: Partial purification, characterization, and role in DNA biosynthesis. Microbiology (Reading) 2000. [DOI: 10.1007/bf02756760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
4
|
Shearer N, Hinsley AP, Van Spanning RJ, Spiro S. Anaerobic growth of Paracoccus denitrificans requires cobalamin: characterization of cobK and cobJ genes. J Bacteriol 1999; 181:6907-13. [PMID: 10559155 PMCID: PMC94164 DOI: 10.1128/jb.181.22.6907-6913.1999] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A pleiotropic mutant of Paracoccus denitrificans, which has a severe defect that affects its anaerobic growth when either nitrate, nitrite, or nitrous oxide is used as the terminal electron acceptor and which is also unable to use ethanolamine as a carbon and energy source for aerobic growth, was isolated. This phenotype of the mutant is expressed only during growth on minimal media and can be reversed by addition of cobalamin (vitamin B(12)) or cobinamide to the media or by growth on rich media. Sequence analysis revealed the mutation causing this phenotype to be in a gene homologous to cobK of Pseudomonas denitrificans, which encodes precorrin-6x reductase of the cobalamin biosynthesis pathway. Convergently transcribed with cobK is a gene homologous to cobJ of Pseudomonas denitrificans, which encodes precorrin-3b methyltransferase. The inability of the cobalamin auxotroph to grow aerobically on ethanolamine implies that wild-type P. denitrificans (which can grow on ethanolamine) expresses a cobalamin-dependent ethanolamine ammonia lyase and that this organism synthesizes cobalamin under both aerobic and anaerobic growth conditions. Comparison of the cobK and cobJ genes with their orthologues suggests that P. denitrificans uses the aerobic pathway for cobalamin synthesis. It is paradoxical that under anaerobic growth conditions, P. denitrificans appears to use the aerobic (oxygen-requiring) pathway for cobalamin synthesis. Anaerobic growth of the cobalamin auxotroph could be restored by the addition of deoxyribonucleosides to minimal media. These observations provide evidence that P. denitrificans expresses a cobalamin-dependent ribonucleotide reductase, which is essential for growth only under anaerobic conditions.
Collapse
Affiliation(s)
- N Shearer
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | |
Collapse
|