1
|
Ren M, Xu Y, Phoon CKL, Erdjument-Bromage H, Neubert TA, Schlame M. Cardiolipin prolongs the lifetimes of respiratory proteins in Drosophila flight muscle. J Biol Chem 2023; 299:105241. [PMID: 37690688 PMCID: PMC10622840 DOI: 10.1016/j.jbc.2023.105241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
Respiratory complexes and cardiolipins have exceptionally long lifetimes. The fact that they co-localize in mitochondrial cristae raises the question of whether their longevities have a common cause and whether the longevity of OXPHOS proteins is dependent on cardiolipin. To address these questions, we developed a method to measure side-by-side the half-lives of proteins and lipids in wild-type Drosophila and cardiolipin-deficient mutants. We fed adult flies with stable isotope-labeled precursors (13C615N2-lysine or 13C6-glucose) and determined the relative abundance of heavy isotopomers in protein and lipid species by mass spectrometry. To minimize the confounding effects of tissue regeneration, we restricted our analysis to the thorax, the bulk of which consists of post-mitotic flight muscles. Analysis of 680 protein and 45 lipid species showed that the subunits of respiratory complexes I-V and the carriers for phosphate and ADP/ATP were among the longest-lived proteins (average half-life of 48 ± 16 days) while the molecular species of cardiolipin were the longest-lived lipids (average half-life of 27 ± 6 days). The remarkable longevity of these crista residents was not shared by all mitochondrial proteins, especially not by those residing in the matrix and the inner boundary membrane. Ablation of cardiolipin synthase, which causes replacement of cardiolipin by phosphatidylglycerol, and ablation of tafazzin, which causes partial replacement of cardiolipin by monolyso-cardiolipin, decreased the lifetimes of the respiratory complexes. Ablation of tafazzin also decreased the lifetimes of the remaining cardiolipin species. These data suggest that an important function of cardiolipin in mitochondria is to protect respiratory complexes from degradation.
Collapse
Affiliation(s)
- Mindong Ren
- Departments of Anesthesiology, Physiology, New York University Grossman School of Medicine, New York, New York, USA; Departments of Cell Biology, Physiology, New York University Grossman School of Medicine, New York, New York, USA.
| | - Yang Xu
- Departments of Anesthesiology, Physiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Colin K L Phoon
- Departments of Pediatrics, Physiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Hediye Erdjument-Bromage
- Departments of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Thomas A Neubert
- Departments of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Michael Schlame
- Departments of Anesthesiology, Physiology, New York University Grossman School of Medicine, New York, New York, USA; Departments of Cell Biology, Physiology, New York University Grossman School of Medicine, New York, New York, USA.
| |
Collapse
|
2
|
Ren M, Xu Y, Phoon CKL, Erdjument-Bromage H, Neubert TA, Schlame M. Knockout of cardiolipin synthase disrupts postnatal cardiac development by inhibiting the maturation of mitochondrial cristae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531996. [PMID: 36945411 PMCID: PMC10029008 DOI: 10.1101/2023.03.09.531996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Background Cardiomyocyte maturation requires a massive increase in respiratory enzymes and their assembly into long-lived complexes of oxidative phosphorylation (OXPHOS). The molecular mechanisms underlying the maturation of cardiac mitochondria have not been established. Methods To determine whether the mitochondria-specific lipid cardiolipin is involved in cardiac maturation, we created a cardiomyocyte-restricted knockout (KO) of cardiolipin synthase ( Crls1 ) in mice and studied the postnatal development of the heart. We also measured the turnover rates of proteins and lipids in cardiolipin-deficient flight muscle from Drosophila, a tissue that has mitochondria with high OXPHOS activity like the heart. Results Crls1KO mice survived the prenatal period but failed to accumulate OXPHOS proteins during postnatal maturation and succumbed to heart failure at the age of 2 weeks. Turnover measurements showed that the exceptionally long half-life of OXPHOS proteins is critically dependent on cardiolipin. Conclusions Cardiolipin is essential for the postnatal maturation of cardiomyocytes because it allows mitochondrial cristae to accumulate OXPHOS proteins to a high concentration and to shield them from degradation.
Collapse
|
3
|
Dudek J, Maack C. Mechano-energetic aspects of Barth syndrome. J Inherit Metab Dis 2022; 45:82-98. [PMID: 34423473 DOI: 10.1002/jimd.12427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022]
Abstract
Energy-demanding organs like the heart are strongly dependent on oxidative phosphorylation in mitochondria. Oxidative phosphorylation is governed by the respiratory chain located in the inner mitochondrial membrane. The inner mitochondrial membrane is the only cellular membrane with significant amounts of the phospholipid cardiolipin, and cardiolipin was found to directly interact with a number of essential protein complexes, including respiratory chain complexes I to V. An inherited defect in the biogenesis of cardiolipin causes Barth syndrome, which is associated with cardiomyopathy, skeletal myopathy, neutropenia and growth retardation. Energy conversion is dependent on reducing equivalents, which are replenished by oxidative metabolism in the Krebs cycle. Cardiolipin deficiency in Barth syndrome also affects Krebs cycle activity, metabolite transport and mitochondrial morphology. During excitation-contraction coupling, calcium (Ca2+ ) released from the sarcoplasmic reticulum drives sarcomeric contraction. At the same time, Ca2+ influx into mitochondria drives the activation of Krebs cycle dehydrogenases and the regeneration of reducing equivalents. Reducing equivalents are essential not only for energy conversion, but also for maintaining a redox buffer, which is required to detoxify reactive oxygen species (ROS). Defects in CL may also affect Ca2+ uptake into mitochondria and thereby hamper energy supply and demand matching, but also detoxification of ROS. Here, we review the impact of cardiolipin deficiency on mitochondrial function in Barth syndrome and discuss potential therapeutic strategies.
Collapse
Affiliation(s)
- Jan Dudek
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Metabolic Alterations Caused by Defective Cardiolipin Remodeling in Inherited Cardiomyopathies. Life (Basel) 2020; 10:life10110277. [PMID: 33187128 PMCID: PMC7697959 DOI: 10.3390/life10110277] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/21/2022] Open
Abstract
The heart is the most energy-consuming organ in the human body. In heart failure, the homeostasis of energy supply and demand is endangered by an increase in cardiomyocyte workload, or by an insufficiency in energy-providing processes. Energy metabolism is directly associated with mitochondrial redox homeostasis. The production of toxic reactive oxygen species (ROS) may overwhelm mitochondrial and cellular ROS defense mechanisms in case of heart failure. Mitochondria are essential cell organelles and provide 95% of the required energy in the heart. Metabolic remodeling, changes in mitochondrial structure or function, and alterations in mitochondrial calcium signaling diminish mitochondrial energy provision in many forms of cardiomyopathy. The mitochondrial respiratory chain creates a proton gradient across the inner mitochondrial membrane, which couples respiration with oxidative phosphorylation and the preservation of energy in the chemical bonds of ATP. Akin to other mitochondrial enzymes, the respiratory chain is integrated into the inner mitochondrial membrane. The tight association with the mitochondrial phospholipid cardiolipin (CL) ensures its structural integrity and coordinates enzymatic activity. This review focuses on how changes in mitochondrial CL may be associated with heart failure. Dysfunctional CL has been found in diabetic cardiomyopathy, ischemia reperfusion injury and the aging heart. Barth syndrome (BTHS) is caused by an inherited defect in the biosynthesis of cardiolipin. Moreover, a dysfunctional CL pool causes other types of rare inherited cardiomyopathies, such as Sengers syndrome and Dilated Cardiomyopathy with Ataxia (DCMA). Here we review the impact of cardiolipin deficiency on mitochondrial functions in cellular and animal models. We describe the molecular mechanisms concerning mitochondrial dysfunction as an incitement of cardiomyopathy and discuss potential therapeutic strategies.
Collapse
|
5
|
Montesinos J, Area-Gomez E, Schlame M. Analysis of phospholipid synthesis in mitochondria. Methods Cell Biol 2020; 155:321-335. [PMID: 32183965 DOI: 10.1016/bs.mcb.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mitochondria and their associated membranes actively participate in biosynthesis, trafficking, and degradation of cellular phospholipids. Two crucial lipid biosynthetic activities of mitochondria include (i) the decarboxylation of phosphatidylserine to phosphatidylethanolamine and (ii) the de novo synthesis of cardiolipin. Here we describe protocols to measure these two activities, applying isotope-labeled or exogenous substrates in combination with thin-layer chromatography or mass spectrometry.
Collapse
Affiliation(s)
- Jorge Montesinos
- Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Michael Schlame
- Departments of Anesthesiology and Cell Biology, New York University School of Medicine, New York, NY, United States.
| |
Collapse
|
6
|
Schädeli D, Serricchio M, Ben Hamidane H, Loffreda A, Hemphill A, Beneke T, Gluenz E, Graumann J, Bütikofer P. Cardiolipin depletion–induced changes in theTrypanosoma bruceiproteome. FASEB J 2019; 33:13161-13175. [DOI: 10.1096/fj.201901184rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- David Schädeli
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Mauro Serricchio
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | | | - Alessio Loffreda
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Ren M, Miller PC, Schlame M, Phoon CKL. A critical appraisal of the tafazzin knockdown mouse model of Barth syndrome: what have we learned about pathogenesis and potential treatments? Am J Physiol Heart Circ Physiol 2019; 317:H1183-H1193. [PMID: 31603701 DOI: 10.1152/ajpheart.00504.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pediatric heart failure remains poorly understood, distinct in many aspects from adult heart failure. Limited data point to roles of altered mitochondrial functioning and, in particular, changes in mitochondrial lipids, especially cardiolipin. Barth syndrome is a mitochondrial disorder caused by tafazzin mutations that lead to abnormal cardiolipin profiles. Patients are afflicted by cardiomyopathy, skeletal myopathy, neutropenia, and growth delay. A mouse model of Barth syndrome was developed a decade ago, which relies on a doxycycline-inducible short hairpin RNA to knock down expression of tafazzin mRNA (TAZKD). Our objective was to review published data from the TAZKD mouse to determine its contributions to our pathogenetic understanding of, and potential treatment strategies for, Barth syndrome. In regard to the clinical syndrome, the reported physiological, biochemical, and ultrastructural abnormalities of the mouse model mirror those in Barth patients. Using this model, the peroxisome proliferator-activated receptor pan-agonist bezafibrate has been suggested as potential therapy because it ameliorated the cardiomyopathy in TAZKD mice, while increasing mitochondrial biogenesis. A clinical trial is now underway to test bezafibrate in Barth syndrome patients. Thus the TAZKD mouse model of Barth syndrome has led to important insights into disease pathogenesis and therapeutic targets, which can potentially translate to pediatric heart failure.
Collapse
Affiliation(s)
- Mindong Ren
- Department of Anesthesiology, New York University School of Medicine, New York, New York.,Department of Cell Biology, New York University School of Medicine, New York, New York
| | - Paighton C Miller
- Department of Pediatrics, Division of Pediatric Cardiology, New York University School of Medicine, New York, New York
| | - Michael Schlame
- Department of Anesthesiology, New York University School of Medicine, New York, New York.,Department of Cell Biology, New York University School of Medicine, New York, New York
| | - Colin K L Phoon
- Department of Pediatrics, Division of Pediatric Cardiology, New York University School of Medicine, New York, New York
| |
Collapse
|
8
|
Semba RD, Moaddel R, Zhang P, Ramsden CE, Ferrucci L. Tetra-linoleoyl cardiolipin depletion plays a major role in the pathogenesis of sarcopenia. Med Hypotheses 2019; 127:142-149. [PMID: 31088638 DOI: 10.1016/j.mehy.2019.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/16/2019] [Indexed: 12/25/2022]
Abstract
Sarcopenia, the progressive loss of muscle mass, strength, and physical performance that occurs during aging, is highly prevalent among the elderly. Sarcopenia increases the risk of falls, disability, and death. The biological basis for sarcopenia is not well understood. There are no specific preventive or therapeutic strategies for sarcopenia except exercise. The elucidation of biological pathways and identification of therapeutic targets for treating or preventing sarcopenia remain a high priority in aging research. Mitochondria play a critical role in skeletal muscle by providing energy in the form of ATP, regulation of signaling, calcium homeostasis, autophagy, and other functions. Cardiolipin, a unique dimeric phospholipid specific to mitochondria and an essential component of mitochondrial membranes, is involved in mitochondrial protein transport, maintaining structural organization of mitochondrial membranes, cellular signaling, regulating enzymes involved in β-oxidation of fatty acids, and facilitating normal electron transport chain (ETC) function and generation of ATP. The fatty acid species composition of cardiolipin is critical to mitochondrial bioenergetics, as cardiolipin affects membrane biophysical properties, binds and stabilizes ETC protein complexes, and shapes the curvature of the mitochondrial cristae. Tetra-linoleoyl cardiolipin (18:2)4 comprises ∼80% of cardiolipin in mitochondria in normal human skeletal and cardiac muscle and is optimal for effective ETC function and ATP generation. Aging is associated with a decrease in cardiolipin content, decrease in tetra-linoleoyl cardiolipin (18:2)4 and replacement of linoleic acid (18:2) with other fatty acids in cardiolipin composition, decline of ETC function, and increased generation of reactive oxygen species in muscle. Together, these findings from the literature prompt the hypothesis that depletion of the cardiolipin (18:2)4 species may be at the root of mitochondrial dysfunction with aging, in turn leading to sarcopenia. Corroboration of the tetra-linoleoyl cardiolipin depletion hypothesis suggests new leads for the prevention and treatment of sarcopenia by enhancing the biosynthesis, accretion, and integrity of tetra-linoleoyl cardiolipin.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Ruin Moaddel
- National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Pingbo Zhang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christopher E Ramsden
- National Institute on Aging, National Institutes of Health, Baltimore, MD, United States; National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
9
|
Mejia EM, Zegallai H, Bouchard ED, Banerji V, Ravandi A, Hatch GM. Expression of human monolysocardiolipin acyltransferase-1 improves mitochondrial function in Barth syndrome lymphoblasts. J Biol Chem 2018; 293:7564-7577. [PMID: 29563154 DOI: 10.1074/jbc.ra117.001024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/01/2018] [Indexed: 12/12/2022] Open
Abstract
The mitochondrial polyglycerophospholipid cardiolipin (CL) is remodeled to obtain specific fatty acyl chains. This is predominantly accomplished by the transacylase enzyme tafazzin (TAZ). Barth syndrome (BTHS) patients with TAZ gene mutations exhibit impaired TAZ activity and loss in mitochondrial respiratory function. Previous studies identified monolysocardiolipin acyltransferase-1 (MLCL AT-1) as a mitochondrial enzyme capable of remodeling CL with fatty acid. In this study, we analyzed what relationship, if any, exists between TAZ and MLCL AT-1 with regard to CL remodeling and whether transfection of BTHS lymphoblasts with an MLCL AT-1 expression construct improves mitochondrial respiratory function. In healthy lymphoblasts, reduction in TAZ expression through TAZ RNAi transfection resulted in a compensatory increase in MLCL AT-1 mRNA, protein, and enzyme activity, but CL mass was unaltered. In contrast, BTHS lymphoblasts exhibited decreased TAZ gene and protein expression but in addition decreased MLCL AT-1 expression and CL mass. Transfection of BTHS lymphoblasts with MLCL AT-1 expression construct increased CL, improved mitochondrial basal respiration and protein leak, and decreased the proportion of cells producing superoxide but did not restore CL molecular species composition to control levels. In addition, BTHS lymphoblasts exhibited higher rates of glycolysis compared with healthy controls to compensate for reduced mitochondrial respiratory function. Mitochondrial supercomplex assembly was significantly impaired in BTHS lymphoblasts, and transfection of BTHS lymphoblasts with MLCL AT-1 expression construct did not restore supercomplex assembly. The results suggest that expression of MLCL AT-1 depends on functional TAZ in healthy cells. In addition, transfection of BTHS lymphoblasts with an MLCL AT-1 expression construct compensates, but not completely, for loss of mitochondrial respiratory function.
Collapse
Affiliation(s)
- Edgard M Mejia
- From the Department of Pharmacology and Therapeutics and.,Center for Research and Treatment of Atherosclerosis, University of Manitoba, Winnipeg, Manitoba R3E 0T6, Canada
| | - Hana Zegallai
- From the Department of Pharmacology and Therapeutics and
| | - Eric D Bouchard
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, Manitoba R3E 0V9, Canada
| | - Versha Banerji
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, Manitoba R3E 0V9, Canada
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Center, Winnipeg, Manitoba R2H 2A6, Canada, and
| | - Grant M Hatch
- From the Department of Pharmacology and Therapeutics and .,Center for Research and Treatment of Atherosclerosis, University of Manitoba, Winnipeg, Manitoba R3E 0T6, Canada.,Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| |
Collapse
|
10
|
Dudek J, Maack C. Barth syndrome cardiomyopathy. Cardiovasc Res 2017; 113:399-410. [PMID: 28158532 DOI: 10.1093/cvr/cvx014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/19/2016] [Accepted: 01/04/2017] [Indexed: 02/02/2023] Open
Abstract
Barth syndrome (BTHS) is an inherited form of cardiomyopathy, caused by a mutation within the gene encoding the mitochondrial transacylase tafazzin. Tafazzin is involved in the biosynthesis of the unique phospholipid cardiolipin (CL), which is almost exclusively found in mitochondrial membranes. CL directly interacts with a number of essential protein complexes in the mitochondrial membranes including the respiratory chain, mitochondrial metabolite carriers, and proteins, involved in shaping mitochondrial morphology. Here we describe, how in BTHS CL deficiency causes changes in the morphology of mitochondria, structural changes in the respiratory chain, decreased respiration, and increased generation of reactive oxygen species. A large number of cellular and animal models for BTHS have been established to elucidate how mitochondrial dysfunction induces sarcomere disorganization and reduced contractility, resulting in dilated cardiomyopathy in vivo.
Collapse
Affiliation(s)
- Jan Dudek
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Christoph Maack
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg/Saar, Germany
| |
Collapse
|
11
|
Biosynthesis, remodeling and turnover of mitochondrial cardiolipin. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:3-7. [PMID: 27556952 DOI: 10.1016/j.bbalip.2016.08.010] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/03/2016] [Accepted: 08/17/2016] [Indexed: 12/15/2022]
Abstract
Among mitochondrial lipids, cardiolipin occupies a unique place. It is the only phospholipid that is specific to mitochondria and although it is merely a minor component, accounting for 10-20% of the total phospholipid content, cardiolipin plays an important role in the molecular organization, and thus the function of the cristae. This review covers the formation of cardiolipin, a phospholipid dimer containing two phosphatidyl residues, and its assembly into mitochondrial membranes. While a large body of literature exists on this topic, the review focuses on papers that appeared in the past three years. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
|
12
|
Xu Y, Phoon CK, Berno B, D’Souza K, Hoedt E, Zhang G, Neubert TA, Epand RM, Ren M, Schlame M. Loss of protein association causes cardiolipin degradation in Barth syndrome. Nat Chem Biol 2016; 12:641-7. [PMID: 27348092 PMCID: PMC4955704 DOI: 10.1038/nchembio.2113] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 04/18/2016] [Indexed: 12/25/2022]
Abstract
Cardiolipin is a specific mitochondrial phospholipid that has a high affinity for proteins and that stabilizes the assembly of supercomplexes involved in oxidative phosphorylation. We found that sequestration of cardiolipin in protein complexes is critical to protect it from degradation. The turnover of cardiolipin is slower by almost an order of magnitude than the turnover of other phospholipids. However, in subjects with Barth syndrome, cardiolipin is rapidly degraded via the intermediate monolyso-cardiolipin. Treatments that induce supercomplex assembly decrease the turnover of cardiolipin and the concentration of monolyso-cardiolipin, whereas dissociation of supercomplexes has the opposite effect. Our data suggest that cardiolipin is uniquely protected from normal lipid turnover by its association with proteins, but this association is compromised in subjects with Barth syndrome, leading cardiolipin to become unstable, which in turn causes the accumulation of monolyso-cardiolipin.
Collapse
Affiliation(s)
- Yang Xu
- Department of Anesthesiology, New York University School of Medicine, New York, New York 10016, USA
| | - Colin K.L. Phoon
- Department of Pediatrics, New York University School of Medicine, New York, New York 10016, USA
| | - Bob Berno
- Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Kenneth D’Souza
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Esthelle Hoedt
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Guoan Zhang
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Thomas A. Neubert
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Richard M. Epand
- Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Mindong Ren
- Department of Anesthesiology, New York University School of Medicine, New York, New York 10016, USA
- Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - Michael Schlame
- Department of Anesthesiology, New York University School of Medicine, New York, New York 10016, USA
- Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
13
|
Ren M, Phoon CKL, Schlame M. Metabolism and function of mitochondrial cardiolipin. Prog Lipid Res 2014; 55:1-16. [PMID: 24769127 DOI: 10.1016/j.plipres.2014.04.001] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/04/2014] [Accepted: 04/14/2014] [Indexed: 12/22/2022]
Abstract
Since it has been recognized that mitochondria are crucial not only for energy metabolism but also for other cellular functions, there has been a growing interest in cardiolipin, the specific phospholipid of mitochondrial membranes. Indeed, cardiolipin is a universal component of mitochondria in all eukaryotes. It has a unique dimeric structure comprised of two phosphatidic acid residues linked by a glycerol bridge, which gives rise to unique physicochemical properties. Cardiolipin plays an important role in the structural organization and the function of mitochondrial membranes. In this article, we review the literature on cardiolipin biology, focusing on the most important discoveries of the past decade. Specifically, we describe the formation, the migration, and the degradation of cardiolipin and we discuss how cardiolipin affects mitochondrial function. We also give an overview of the various phenotypes of cardiolipin deficiency in different organisms.
Collapse
Affiliation(s)
- Mindong Ren
- Department of Anesthesiology, New York University School of Medicine, New York, USA; Department of Cell Biology, New York University School of Medicine, New York, USA
| | - Colin K L Phoon
- Department of Pediatrics, New York University School of Medicine, New York, USA
| | - Michael Schlame
- Department of Anesthesiology, New York University School of Medicine, New York, USA; Department of Cell Biology, New York University School of Medicine, New York, USA.
| |
Collapse
|
14
|
The turnover of glycerol and acyl moieties of cardiolipin. Chem Phys Lipids 2013; 179:17-24. [PMID: 24184572 DOI: 10.1016/j.chemphyslip.2013.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 01/30/2023]
Abstract
The dynamical behavior of mitochondria has attracted much attention, but little is known about the dynamics of mitochondrial lipids, specifically cardiolipin (CL). Here, we estimated the turnover of select molecular species of CL in mammalian cell cultures and compared it to the turnover of other lipids, including phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylinositol. Cells were labeled with myristic acid, 9,10-²H₂-oleic acid, or D-[U-¹³C₆]-glucose and analyzed by mass spectrometry at different time points of pulse-chase experiments. The turnover of glycerol groups was monitored by specific isotopologues that carried ¹³C primarily in the glycerol carbons, whereas the turnover of acyl groups was monitored by molecular species that carried myristoyl or ²H₂-oleoyl groups. We found that the turnover of CL, but not of mitochondrial PC and PE, was substantially slower than the turnover of other cellular phospholipids. In dioleoyl-PC and dioleoyl-PE, the acyl turnover was faster than the glycerol turnover, indicating continuous deacylation and reacylation of the oleoyl residues. In contrast, the acyl turnover was similar to the glycerol turnover in tetraoleoyl-CL, suggesting that oleoyl remodeling did not take place continuously in endogenous CL. We conclude that CL, once assembled in mitochondrial membranes, remains largely inert to degradation and acyl remodeling.
Collapse
|
15
|
Wahjudi PN, K Yee J, Martinez SR, Zhang J, Teitell M, Nikolaenko L, Swerdloff R, Wang C, Lee WNP. Turnover of nonessential fatty acids in cardiolipin from the rat heart. J Lipid Res 2011; 52:2226-2233. [PMID: 21957203 DOI: 10.1194/jlr.m015966] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cardiolipin (CL) is a unique phospholipid (PL) found in the mitochondria of mammalian cells. CL remodeling is accompanied by turnover of its fatty acid acyl groups. Abnormalities in CL remodeling have been found in Barth's syndrome, diabetes, and obesity. The objective of this study was to determine nonessential fatty acid turnover in CL and phosphatidylethanolamine (PE) in the rat heart in vivo. Sprague-Dawley rats were fed either a regular chow or a high-fat diet for 15 weeks, and consumed 6% deuterium-enriched drinking water as a tracer for 14 days. CL and PE were extracted from cardiac tissue and isolated by TLC. Fatty acids from CL, PE, and plasma were analyzed by GC/MS for deuterium incorporation. Results showed oleate and vaccenate turnover were the highest in CL whereas palmitate and stearate turnover were low. Among the nonessential fatty acids in PE, turnover of stearate and vaccenate were the highest. The high turnover rate in vaccenate was unexpected, because vaccenate previously had no known metabolic or physiologic function. In conclusion, the similarly high turnover rates of both oleate and vaccenate readily suggest that remodeling is an important functional aspect of PL metabolism in CL.
Collapse
Affiliation(s)
| | - Jennifer K Yee
- LA Biomedical Research Institute, Torrance, CA; Division of Endocrinology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | | | - Jin Zhang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Michael Teitell
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Liana Nikolaenko
- LA Biomedical Research Institute, Torrance, CA; Division of Endocrinology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA and
| | - Ronald Swerdloff
- LA Biomedical Research Institute, Torrance, CA; Division of Endocrinology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA and
| | - Christina Wang
- LA Biomedical Research Institute, Torrance, CA; Division of Endocrinology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA and
| | - W N Paul Lee
- LA Biomedical Research Institute, Torrance, CA; Division of Endocrinology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA.
| |
Collapse
|
16
|
Houtkooper RH, Turkenburg M, Poll-The BT, Karall D, Pérez-Cerdá C, Morrone A, Malvagia S, Wanders RJ, Kulik W, Vaz FM. The enigmatic role of tafazzin in cardiolipin metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2003-14. [PMID: 19619503 DOI: 10.1016/j.bbamem.2009.07.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 06/26/2009] [Accepted: 07/13/2009] [Indexed: 11/27/2022]
Abstract
The mitochondrial phospholipid cardiolipin plays an important role in cellular metabolism as exemplified by its involvement in mitochondrial energy production and apoptosis. Following its biosynthesis, cardiolipin is actively remodeled to achieve its final acyl composition. An important cardiolipin remodeling enzyme is tafazzin, of which several mRNA splice variants exist. Mutations in the tafazzin gene cause the X-linked recessive disorder Barth syndrome. In addition to providing an overview of the current knowledge in literature about tafazzin, we present novel experimental data and use this to discuss the functional role of the different tafazzin variants in cardiolipin metabolism in relation to Barth syndrome. We developed and performed specific quantitative PCR analyses of different tafazzin mRNA splice variants in 16 human tissues and correlated this with the tissue cardiolipin profile. In BTHS fibroblasts we showed that mutations in the tafazzin gene affected both the level and distribution of tafazzin mRNA variants. Transient expression of selected human tafazzin variants in BTHS fibroblasts showed for the first time in a human cell system that tafazzin lacking exon5 indeed functions in cardiolipin remodeling.
Collapse
Affiliation(s)
- Riekelt H Houtkooper
- University of Amsterdam, Academic Medical Center, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gonzalvez F, Schug ZT, Houtkooper RH, MacKenzie ED, Brooks DG, Wanders RJA, Petit PX, Vaz FM, Gottlieb E. Cardiolipin provides an essential activating platform for caspase-8 on mitochondria. ACTA ACUST UNITED AC 2008; 183:681-96. [PMID: 19001123 PMCID: PMC2582890 DOI: 10.1083/jcb.200803129] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cardiolipin is a mitochondria-specific phospholipid known to be intimately involved with apoptosis. However, the lack of appropriate cellular models to date restricted analysis of its role in cell death. The maturation of cardiolipin requires the transacylase tafazzin, which is mutated in the human disorder Barth syndrome. Using Barth syndrome patient-derived cells and HeLa cells in which tafazzin was knocked down, we show that cardiolipin is required for apoptosis in the type II mitochondria-dependent response to Fas stimulation. Cardiolipin provides an anchor and activating platform for caspase-8 translocation to, and embedding in, the mitochondrial membrane, where it oligomerizes and is further activated, steps that are necessary for an efficient type II apoptotic response.
Collapse
Affiliation(s)
- Francois Gonzalvez
- Cancer Research UK, The Beatson Institute for Cancer Research, Glasgow, Scotland, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Xu Y, Kelley RI, Blanck TJJ, Schlame M. Remodeling of Cardiolipin by Phospholipid Transacylation. J Biol Chem 2003; 278:51380-5. [PMID: 14551214 DOI: 10.1074/jbc.m307382200] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial cardiolipin (CL) contains unique fatty acid patterns, but it is not known how the characteristic molecular species of CL are formed. We found a novel reaction that transfers acyl groups from phosphatidylcholine or phosphatidylethanolamine to CL in mitochondria of rat liver and human lymphoblasts. Acyl transfer was stimulated by ADP, ATP, and ATP gamma S, but not by other nucleotides. Coenzyme A stimulated the reaction only in the absence of adenine nucleotides. Free fatty acids were not incorporated into CL under the same incubation condition. The transacylation required addition of exogenous CL or monolyso-CL, whereas dilyso-CL was not a substrate. Transacylase activity was decreased in lymphoblasts from patients with Barth syndrome (tafazzin deletion), and this was accompanied by drastic changes in the molecular composition of CL. In rat liver, where linoleic acid was the most abundant residue of CL, only linoleoyl groups were transferred into CL, but not oleoyl or arachidonoyl groups. We demonstrated complete remodeling of tetraoleoyl-CL to tetralinoleoyl-CL in rat liver mitochondria and identified the intermediates linoleoyl-trioleoyl-CL, dilinoleoyl-dioleoyl-CL, and trilinoleoyl-oleoyl-CL by high-performance liquid chromatography. The data suggest that CL is remodeled by acyl specific phospholipid transacylation and that tafazzin is an acyltransferase involved in this mechanism.
Collapse
Affiliation(s)
- Yang Xu
- Department of Anesthesiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
19
|
Berger A, German JB, Gershwin ME. Biochemistry of cardiolipin: sensitivity to dietary fatty acids. ADVANCES IN FOOD AND NUTRITION RESEARCH 1993; 37:259-338. [PMID: 8398046 DOI: 10.1016/s1043-4526(08)60118-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- A Berger
- Department of Food Science and Technology, University of California, Davis 95616
| | | | | |
Collapse
|
20
|
Berger A, Gershwin ME, German JB. Effects of various dietary fats on cardiolipin acyl composition during ontogeny of mice. Lipids 1992; 27:605-12. [PMID: 1406071 DOI: 10.1007/bf02536118] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cardiolipin (CL) is a unique mitochondrial phospholipid, containing up to 85 wt% 18:2n-6 in mammals. The influence of maternal dietary fatty acids on the acyl composition of offspring CL has not been examined previously. Adult female mice were thus fed diets rich in 18:1n-9 (olive oil), 18:2n-6 (safflower oil), 18:3n-3 (linseed oil) or 20:5n-3 and 22:6n-3 (fish oil/safflower, 9:1, w/w), for a five month period, encompassing two breeding cycles. Offspring from the second breeding cycle were then fed these diets. The acyl composition of CL, phosphatidylcholine and phosphatidylethanolamine from liver and heart was evaluated from mice killed 3, 18 and 42 days after parturition. The primary nutrient sources at these three time points were transplacental nutrients, breast milk and the diet, respectively. Maternal diet was found to influence the acyl composition of CL via both placental transfer of fatty acids and breast milk. Fish oil feeding resulted in replacement of a substantial portion of 18:2n-6 with 22:6n-3; after 42 days, the area% of 18:2n-6 in heart CL was reduced from 62% in safflower oil fed mice to 12%. In comparison to fish oil feeding, linseed oil feeding resulted in a much lower accumulation of 22:6n-3. Olive oil feeding resulted in substantial replacement of 18:2n-6 with 18:1n-9 (18:2n-6 was reduced from 62% to 31%). Physiologically, these findings are relevant because changes in CL acyl composition may influence the activity of associated inner mitochondrial membrane enzymes.
Collapse
Affiliation(s)
- A Berger
- Department of Food Science and Technology, University of California, Davis 95616
| | | | | |
Collapse
|
21
|
Abstract
Evidence is discussed for roles of cardiolipins in oxidative phosphorylation mechanisms that regulate State 4 respiration by returning ejected protons across and over bacterial and mitochondrial membrane phospholipids, and that regulate State 3 respiration through the relative contributions of proteins that transport protons, electrons and/or metabolites. The barrier properties of phospholipid bilayers support and regulate the slow proton leak that is the basis for State 4 respiration. Proton permeability is in the range 10(-3)-10(-4) cm s-1 in mitochondria and in protein-free membranes formed from extracted mitochondrial phospholipids or from stable synthetic phosphatidylcholines or phosphatidylethanolamines. The roles of cardiolipins in proton conductance in model phospholipid membrane systems need to be assessed in view of new findings by Hübner et al. [313]: saturated cardiolipins form bilayers whilst natural highly unsaturated cardiolipins form nonlamellar phases. Mitochondrial cardiolipins apparently participate in bilayers formed by phosphatidylcholines and phosphatidylethanolamines. It is not yet clear if cardiolipins themselves conduct protons back across the membrane according to their degree of fatty acyl saturation, and/or modulate proton conductance by phosphatidylcholines and phosphatidylethanolamines. Mitochondrial cardiolipins, especially those with high 18:2 acyl contents, strongly bind many carrier and enzyme proteins that are involved in oxidative phosphorylation, some of which contribute to regulation of State 3 respiration. The role of cardiolipins in biomembrane protein function has been examined by measuring retained phospholipids and phospholipid binding in purified proteins, and by reconstituting delipidated proteins. The reconstitution criterion for the significance of cardiolipin-protein interactions has been catalytical activity; proton-pumping and multiprotein interactions have yet to be correlated. Some proteins, e.g., cytochrome c oxidase are catalytically active when dimyristoylphosphatidylcholine replaces retained cardiolipins. Cardiolipin-protein interactions orient membrane proteins, matrix proteins, and on the outerface receptors, enzymes, and some leader peptides for import; activate enzymes or keep them inactive unless the inner membrane is disrupted; and modulate formation of nonbilayer HII-phases. The capacity of the proton-exchanging uncoupling protein to accelerate thermogenic respiration in brown adipose tissue mitochondria of cold-adapted animals is not apparently affected by the increased cardiolipin unsaturation; this protein seems to take over the protonophoric role of cardiolipins in other mitochondria. Many in vivo influences that affect proton leakage and carrier rates selectively alter cardiolipins in amount per mitochondrial phospholipids, in fatty acyl composition and perhaps in sidedness; other mitochondrial membrane phospholipids respond less or not at all.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- F L Hoch
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
| |
Collapse
|
22
|
Harper ME, Patrick J, Kramer JK, Wolynetz MS. Erythrocyte membrane lipid alterations in undernourished cerebral palsied children during high intakes of a soy oil-based enteral formula. Lipids 1990; 25:639-45. [PMID: 2127821 DOI: 10.1007/bf02536015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Five undernourished children with severe cerebral palsy (CP) were tube-fed sufficient volumes of Isocal to allow rapid weight gain. Isocal provided, on average, 88% of their daily energy intake for at least 25 days. The purpose of our study was to correct the undernutrition and to analyze the major erythrocyte phospholipids before and after feeding periods for possible feeding and disease-related differences. The fatty acid profiles of erythrocyte membranes from CP children were compared with those from 12 healthy children and with the fatty acid composition of the formula. There were no clinical or biochemical indications of essential fatty acid deficiency. The feeding of a soy oil-based formula increased the proportions of 18:2n-6 in the phospholipids. The increases occurred predominantly in phosphatidylcholine followed by phosphatidylethanolamine. Despite such large dietary intakes of soy oil, no changes were observed in the phospholipid concentrations of 20:4n-6, 18:3n-3, 20:5n-3, or in the C22n-6 and C22n-3 fatty acids. These findings are consistent with an inhibition of the delta 6 desaturase by high dietary linoleate.
Collapse
Affiliation(s)
- M E Harper
- Department of Biochemistry, University of Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
23
|
Janero DR, Burghardt C. Solid-phase extraction on silica cartridges as an aid to platelet-activating factor enrichment and analysis. JOURNAL OF CHROMATOGRAPHY 1990; 526:11-24. [PMID: 2160473 DOI: 10.1016/s0378-4347(00)82479-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Solid-phase extraction methods using pre-packed silica cartridges and various elution solvents have been developed and evaluated as chromatographic means to enrich biological lipid extracts for platelet-activating factor (PAF). The optimized procedure advanced selectively removed the major tissue/blood neutral lipids and non-choline-containing phospholipids from complex lipid mixtures and yielded thereby a choline phospholipid fraction markedly enriched in bioactive PAF. Some tested solid-phase extraction procedures, while capable of resolving choline phospholipids from other polar and non-polar species, were detrimental to PAF's bioactivity and evidenced considerable loss or degradation of this analyte. It is concluded that, with solvents of appropriate composition, strength and polarity, solid-phase extraction on silica cartridges has several unique advantages over conventional thin-layer and column chromatographic methods presently in use for PAF enrichment from biological sources.
Collapse
Affiliation(s)
- D R Janero
- Roche Research Center, Department of Pharmacology and Chemotherapy, Hoffmann-La Roche Inc., Nutley, NJ 07110
| | | |
Collapse
|
24
|
Pettersen J, Opstvedt J. Trans fatty acids. 3. Fatty acid composition of the brain and other organs in the newborn piglet. Lipids 1989; 24:616-24. [PMID: 2779366 DOI: 10.1007/bf02535078] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The effects of dietary trans fatty acids on tissue fatty acid composition were studied in newborn piglets delivered from sows fed partially hydrogenated fish oil (PHFO) (28% trans) or partially hydrogenated soybean oil (PHSBO) (36% trans) in comparison with lard (0% trans) from 3 wk of age and through gestation in Experiment 1, or fed PHFO or "fully" hydrogenated fish oil (HFO) (19% trans) in comparison with coconut oil (CF) (0% trans) with two levels, 1 and 2.7%, of dietary linoleic acid from conception through gestation in Experiment 2. The piglets were sampled immediately after delivery, without having access to mothers' milk. Incorporation of trans fatty acids into brain PE (phosphatidylethanolamine) were non-detectable or very low (less than 0.1%). The incorporation of 18:1 trans into heart-PE, liver mitochondria-PE, total plasma lipids and adipose tissue was low, and 20:1 trans was not detected. Dietary trans fatty acids had no consistent effects on the overall fatty acid composition of the different tissue lipids. It is concluded that trans fatty acids from PHFO, HFO and PHSBO have no significant effects on the fatty acid accretion in the fetal piglet.
Collapse
Affiliation(s)
- J Pettersen
- Norwegian Herring Oil, Meal Industry Research Institute, Bergen, Norway
| | | |
Collapse
|
25
|
|
26
|
Affiliation(s)
- F L Hoch
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor 48109
| |
Collapse
|
27
|
Demant EJ, Wassermann K. Doxorubicin induced alterations in lipid metabolism of cultured myocardial cells. Biochem Pharmacol 1985; 34:1741-6. [PMID: 4004891 DOI: 10.1016/0006-2952(85)90644-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Doxorubicin (DX) was found to inhibit the incorporation of [1-14C]linoleic acid and [1(3)-3H]glycerol into the major membrane phosphoglycerides, phosphatidylcholine and phosphatidylethanolamine of cultured myocardial cells in a dose-dependent manner (0.16-16 microM). It is suggested that DX affects de novo biosynthesis of these lipids. In contrast, DX-treatment of the cells stimulated incorporation of [1-14C]linoleic acid into triacylglycerol. The effects of DX on lipid metabolism were only demonstrable 20-24 hr after a 1 hr exposure of the cells to the drug indicating that DX exerts little or no direct effect on the enzymes participating in lipid synthesis and that the alterations in lipid metabolism induced by DX probably are secondary to inhibition of protein synthesis and progressive cell injury. Extensive peroxidative decomposition of membrane lipids appeared not to take place in the DX-treated cells as judged from fatty acid analysis of total membrane phosphoglyceride.
Collapse
|
28
|
Ruggiero FM, Landriscina C, Gnoni GV, Quagliariello E. Lipid composition of liver mitochondria and microsomes in hyperthyroid rats. Lipids 1984; 19:171-8. [PMID: 6717248 DOI: 10.1007/bf02534794] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Triiodothyronine-induced alteration of the lipid pattern in rat-liver mitochondria and microsomes has been investigated. In mitochondria, a 25% total cholesterol decrease and a 14% phospholipid increase have been detected. In these hyperthyroid rat liver organelles, a strong decrease in the total cholesterol/phospholipid molar ratio occurs. On the contrary, in microsomes from the same animals, a decrease of about 23% has been measured for both total cholesterol and phospholipids; hence, in this fraction, the total cholesterol/phospholipid molar ratio is unaffected by hyperthyroidism. The liver mitochondrial phospholipid composition, unlike the microsomal composition, is altered significantly in hyperthyroid rats; a 7.4% phosphatidylcholine decrease is accompanied by a similar additive percentage increase of both phosphatidylethanolamine and cardiolipin. In regard to total phospholipid fatty acid composition in liver microsomes from hyperthyroid rats, no variation has been observed compared with the control rats, whereas in mitochondria from the same animals, a meaningful linoleic acid decrease with a similar arachidonic acid increase has been found. In addition to fatty acid alteration, the separated mitochondrial phospholipid classes also exhibit some increase in stearic acid. Among phospholipids, cardiolipin changes the most of the esterified fatty acids in hyperthyroid rat liver. In this compound, a strong increase in the percentage of both palmitic and stearic acid and a 32.4% decrease of linoleic acid have been found.
Collapse
|
29
|
Høy CE, Hølmer G, Kaur N, Byrjalsen I, Kirstein D. Acyl group distributions in tissue lipids of rats fed evening primrose oil (λ-linolenic plus linoleic acid) or soybean oil (α-linolenic plus linoleic acid). Lipids 1983; 18:760-71. [DOI: 10.1007/bf02534633] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/1983] [Indexed: 02/02/2023]
|
30
|
|
31
|
Abstract
The author reviews the arguments for and against the four etiologic hypotheses in Friedreich's disease that have been proposed since 1974: the "pyruvate hypothesis", the "lipid-membrane hypothesis", the "energy-defect hypothesis" and finally the "taurine hypothesis". While none of these hypotheses are mutually exclusive, the author shows that all of these mechanisms play some role in the pathophysiology of the symptoms, but that only the "taurine hypothesis" appears to be compatible with all the known facts and the biochemical abnormalities reported. The author proposed that the taurine retention defect (possibly due to a block in the high affinity-low capacity transport of taurine - The TH System) is a primary event in Friedreich's disease. Whether it is the primary genetic event still has to be determined.
Collapse
|
32
|
Bonini de Romanelli IC, Alonso TS, Bazán NG. Phosphatidic acid, phosphatidylinositol, phosphatidylserine and cardiolipin in the course of early embryonic development. Fatty acid composition and content in whole toad embryos and in mitochondrial fractions. BIOCHIMICA ET BIOPHYSICA ACTA 1981; 664:561-71. [PMID: 6791698 DOI: 10.1016/0005-2760(81)90133-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The fatty acid composition and content of phosphatidylinositol, phosphatidylserine and phosphatidic acid have been studied during the early development of toad embryos. Acidic phospholipids have been analyzed in whole oocytes and embryos and in the following subcellular fractions: yolk platelets, mitochondria and microsomes. Also cardiolipin, a mitochondrial phospholipid, has been analyzed. Gastrula stage embryos have shown, mainly in the mitochondrial fraction, an increase in the content of phosphatidic acid, phosphatidylserine and phosphatidylinositol with respect to unfertilized oocytes. Changes in the distribution of acyl groups of phosphatidic acid have been detected when different subcellular fractions are compared. On the other hand, the phosphatidylserine composition remains unmodified. Arachidonate and stearate are the principal components of phosphatidylinositol. Cardiolipin shows the same composition up to gastrulation and linoleate comprises about 50% of the total acyl groups.
Collapse
|
33
|
Innis SM, Clandinin MT. Dynamic modulation of mitochondrial inner-membrane lipids in rat heart by dietary fat. Biochem J 1981; 193:155-67. [PMID: 7305919 PMCID: PMC1162586 DOI: 10.1042/bj1930155] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A novel longitudinal feeding design was used to investigate the controlling influence of dietary fatty acids on the dynamic incorporation of fatty-acyl chains into phosphatidylcholine, phosphatidylethanolamine and cardiolipin in inner membrane of cardiac mitochondria. Rats were fed a polyunsaturated-fatty-acid-rich oil (soya-bean oil) for 12 days, crossed-over to a monounsaturated-fatty-acid-rich oil (rapeseed oil) for the next 11 days, then returned to soya-bean oil for 11 more days. Additional rats were fed either soya-bean oil or rapeseed oil only throughout. Rats were killed serially. Regression analysis was used to represent longitudinal flux in membrane lipid fatty-acid composition occurring with change in dietary fat. The fatty-acid composition of phosphatidylcholine, phosphatidylethanolamine and cardiolipin was influenced by dietary oil in a reversible way. Maximal diet influence was achieved in the 11-day cross-over period. Soya-bean oil to rapeseed oil cross-over caused the fatty-acid composition of phosphatidylcholine, phosphatidylethanolamine and cardiolipin to resemble that of rats fed rapeseed oil only. These changes were reversed by crossing back to soya-bean oil, indicating the dynamic state and short half-life of membrane phospholipid fatty-acyl chains. This report demonstrates for the first time in the whole animal fed diets adequate in all nutrients that subcellular membrane lipids rapidly respond to change in dietary fatty-acid balance. The system may be used to assess in vivo the significance of dietary fat in determining membrane physicochemical properties and biochemical functions.
Collapse
|
34
|
Abstract
Phase three of the Quebec Cooperative Study of Friedreich's Ataxia was devoted to an understanding of the physiopathology of individual symptoms on the basis of previously discovered biochemical leads. The present paper attempts to pull these results together by presenting, as a hypothesis, a unifying scheme of possible interactions and relationships. The central core of this hypothesis is the demonstration in Friedreich's ataxia of a state of mitochondrial energy deprivation. This is indirectly responsible for such associated and important symptoms as muscle weakness, dying-back neuropathy, scoliosis and hypertrophic cardiomyopathy. Secondarily, and possibly as an independent but linked-event, the entry of glucose into cells and pyruvate oxidation, are slowed down, favoring the development of diabetes. As a consequence, tissue concentrations of glutamic acid and aspartic acid are decreased, particularly in more vulnerable areas such as the cerebellum, brain stem and dorsal root ganglia. This tissue deficiency in putative excitatory neurotransmitters is directly responsible for the symptom of ataxia. This conclusion is reinforced by the correction of the ataxia in experimental animals, by the intraventricular injection of the same amino acids, and not by the injection of other stimulants of motricity. The observed mitochondrial energy deprivation could be the metabolic consequence of major changes in the linoleic acid (18.2) composition of inner mitochondrial membrane phospholipids, such as cardiolipin. Such decreases in membrane 18:2 could be the result of interference with the normal incorporation of this fatty acid to lipoproteins and/or cell membranes. It is at this level that the search for the specific enzyme defect in Friedreich's ataxia is continuing.
Collapse
|
35
|
Hallman M, Kankare P. Mitochondrial and microsomal phospholipid phosphorus metabolism during postnatal growth in rat heart and liver. Lipids 1979; 14:435-40. [PMID: 459707 DOI: 10.1007/bf02533458] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
|
37
|
Dewailly P, Nouvelot A, Sezille G, Fruchart JC, Jaillard J. Changes in fatty acid composition of cardiac mitochondrial phospholipids in rats fed rapeseed oil. Lipids 1978; 13:301-4. [PMID: 661516 DOI: 10.1007/bf02533676] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Male Wistar rats were fed rapeseed oil containing high or low levels or erucic acid for 20 weeks, and changes in the fatty acid composition of cardiac mitochondrial phospholipids were studied. Treatment with rapeseed oil containing 46.2% erucic acid showed incorporation of 22:1 (5.6%) into isolated cardiolipin from heart mitochondria. After high or low (3.7%) erucic rapeseed oil feeding, linolenic acid was slightly incorporated into cardiolipin. Moreover, both of these rapeseed oils induced a significant increase of linoleate-arachidonate ratio in phosphatidylethanolamine and phosphatidylcholine. This ratio was also significantly increased in fatty acids esterified to the beta-position of these phospholipids. On the basis of such results, we have to consider the role of linolenic acid which is present at a high level in the different rapeseed oils used, as a possible inhibitor of heart microsomal enzymes involved in linoleate arachidonate conversion. Such alterations might account for mitochondrial fragility and myocardial lesions obtained in long term rapeseed oil feeding experiments.
Collapse
|
38
|
Lipton JH, McMurray WC. Mitochondrial biogenesis in cultured mammalian cells. II. Mitochondrial protein and phospholipid synthesis in chloramphenicol-treated BHK-21 cells. BIOCHIMICA ET BIOPHYSICA ACTA 1977; 477:273-87. [PMID: 884116 DOI: 10.1016/0005-2787(77)90052-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The effect of growth of BHK-21 cells in chloramphenicol on the synthesis of cellular proteins and phospholipids has been examined. The incorporation of leucine into total cellular proteins, or into the proteins of specific subcellular fractions are not significantly reduced by cell culture in the presence of chloramphenicol. In cells treated with cycloheximide, a small amount of chloramphenicol-sensitive labelling of protein was detected within the first hour of exposure to the drug. Chloramphenicol inhibits the incorporation of delta-amino-levulinic acid into hemoproteins, only if it is present during both the 48-h culturing and 4-h labelling period. De novo synthesis of cellular lipids as measured by pulse labelling with 32Pi or [3H]glycerol, is decreased in chloramphenicol-treated cells. This decrease is observed in all sub-cellular fractions, although the mitochondrial fraction is most affected. All phospholipids are affected, with diphosphatidylglycerol labelling reduced to the greatest extent. Although fatty acid synthesis is inhibited, the labelling of diphosphatidylglycerol with fatty acids is stimulated on chloramphenicol treatment.
Collapse
|
39
|
Dewailly P, Sezille G, Nouvelot A, Fruchart JC, Jaillard J. Changes in rat heart phospholipid composition after rapeseed oil feeding. Lipids 1977; 12:301-6. [PMID: 846318 DOI: 10.1007/bf02533352] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The influence of long duration rapeseed oil feeding with high or low levels of erucic acid has been investigated on rat heart phospholipids. The rats treated for 20 wk with rapeseed oil containing 46.2% erucic acid showed a twofold increase in the sphingomyelin content of the heart. Treatment with primor rapeseed oil (3.7% erucic acid) for 20 wk did not modify phospholipid composition of rat heart. The fatty acid patterns of phosphatidylethanolamine and phosphatidylcholine were slightly influenced by the high erucic rapeseed oil; eicosenoic acid was incorporated preferentially into position one, but erucic acid showed a random distribution in both. After high erucic rapeseed oil feeding, 22:1 was incorporated into cardiolipin (5.6%) and sphingomyelin (10.5%). The incorporation of 22:1 into sphingomyelin was associated with an increase of the percentage of 24:1 (14.6%) and a decrease of saturated long chain fatty acid (22:0, 24:0) percentages. Primor rapeseed oil caused a slight increase of 24:1 and a decrease of 22:0 and 24:0 in rat heart sphingomyelin. As cardiolipin is localized in the inner membrane of mitochondria and sphingomyelin in plasma and microsomal membranes, the acyl-moiety alterations of both phospholipids might be correlated to the pathological lesions of rat heart after a long duration of rapeseed oil feeding.
Collapse
|
40
|
Rosenthal MD, Geyer RP. Release of phospholipid acyl groups from fetal human fibroblasts. Biochem Biophys Res Commun 1977; 74:1456-62. [PMID: 843371 DOI: 10.1016/0006-291x(77)90605-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|