1
|
Silva F, Guirgis A, von Aderkas P, Borchers CH, Thornburg R. LC-MS/MS based comparative proteomics of floral nectars reveal different mechanisms involved in floral defense of Nicotiana spp., Petunia hybrida and Datura stramonium. J Proteomics 2020; 213:103618. [PMID: 31846763 DOI: 10.1016/j.jprot.2019.103618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/01/2019] [Accepted: 12/13/2019] [Indexed: 11/19/2022]
Abstract
Tobacco floral nectar (FN) is a biological fluid produced by nectaries composed of sugars, amino acids and proteins called nectarins, involved in the floral defense. FN provides an ideal source of nutrients for microorganisms. Understanding the role of nectar proteins is essential to predict impacts in microbial growth, composition and plants-pollinators interactions. Using LC-MS/MS-based comparative proteomic analysis we identified 22 proteins from P. hybrida, 35 proteins from D. stramonium, and 144 proteins from 23 species of Nicotiana. The data are available at ProteomeXchance (PXD014760). GO analysis and secretory signal prediction demonstrated that defense/stress was the largest group of proteins in the genus Nicotiana. The Nicotiana spp. proteome consisted of 105 exclusive proteins such as lipid transfer proteins (LTPs), Nectar Redox Cycle proteins, proteases inhibitors, and PR-proteins. Analysis by taxonomic sections demonstrated that LTPs were most abundant in Undulatae and Noctiflora, while nectarins were more abundant in Rusticae, Suaveolens, Polydicliae, and Alata sections. Peroxidases (Pox) and chitinases (Chit) were exclusive to P. hybrida, while D. stramonium had only seven unique proteins. Biochemical analysis confirmed these differences. These findings support the hypothesis that, although conserved, there is differential abundance of proteins related to defense/stress which may impact the mechanisms of floral defense. SIGNIFICANCE: This study represents a comparative proteomic analysis of floral nectars of the Nicotiana spp. with two correlated Solanaceous species. Significant differences were identified between the proteome of taxonomic sections providing relevant insights into the group of proteins related to defense/stress associated with Nectar Redox Cycle, antimicrobial proteins and signaling pathways. The activity of FNs proteins is suggested impact the microbial growth. The knowledge about these proteomes provides significant insights into the diversity of proteins secreted in the nectars and the array of mechanisms used by Nicotiana spp. in its floral defense.
Collapse
Affiliation(s)
- FredyA Silva
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Adel Guirgis
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA; Institute of Genetic Engineering and Biotechnology, Menofiya University, Sadat City, Egypt
| | - Patrick von Aderkas
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Christoph H Borchers
- University of Victoria - Genome BC Proteomics Centre, University of Victoria, Victoria, BC V8P 5C2, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada; Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada; Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Robert Thornburg
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
2
|
Huuskonen J, Olkkonen VM, Jauhiainen M, Metso J, Somerharju P, Ehnholm C. Acyl chain and headgroup specificity of human plasma phospholipid transfer protein. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1303:207-14. [PMID: 8908155 DOI: 10.1016/0005-2760(96)00103-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Phospholipid transfer protein (PLTP) is a plasma protein with two reported in vitro activities: transfer of phospholipids and modulation of HDL particle size. The mechanism of PLTP-mediated phospholipid transfer was studied by determining the acyl chain and headgroup specificity and comparing the results with those obtained with the non-specific lipid transfer protein (ns-LTP), a previously characterised intracellular transfer protein. To verify the results obtained with purified plasma PLTP, recombinant PLTP produced in COS-1 cells was used. The transfer rates were determined by monitoring the transfer of fluorescent, pyrene-labeled phospholipids from quenched donor phospholipid vesicles to HDL3 particles. When the length of the pyrene-labeled acyl chain was varied from 6 to 14 carbons, a fairly monotonous decrease in the transfer rate was observed. No difference in rate was observed for the isomers having the pyrene-labeled and unlabeled acyl chains in reversed positions. PLTP mediated equally the transfer of the various headgroup derivatives except phosphatidylethanolamine (PE), which was transferred 2-3-fold more slowly. In all experiments the plasma and recombinant PLTP behaved identically. The specificity patterns observed for PLTP and ns-LTP were very similar. No PLTP-phospholipid intermediate could be observed, indicating that PLTP, like ns-LTP, does not form a tight complex with the lipid substrate and may thus mediate the transfer of phospholipid via another, yet unspecified mechanism.
Collapse
Affiliation(s)
- J Huuskonen
- Department of Biochemistry, National Public Health Institute, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
3
|
Shina R, Crain RC, Rosenberg P, Condrea E. Exposure of phosphatidylcholine and phosphatidylinositol in plasma membranes from rat brain synaptosomes treated with phospholipase A2 toxins (beta-bungarotoxin, notexin) and enzymes (Naja nigricollis, Naja naja atra). Toxicon 1994; 32:675-85. [PMID: 7940575 DOI: 10.1016/0041-0101(94)90337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Phospholipase A2 (PLA2) toxins act presynaptically to block acetylcholine release and are much more potent and specific in their actions than PLA2 enzymes even though they have lower enzymatic activity. Since their mechanism of action is not completely understood, it was of interest to examine the toxins' effects on phospholipid asymmetry as changes in asymmetry are associated with changes in membrane functioning. Rat brain synaptosomes were treated with the PLA2 toxins beta-bungarotoxin (beta-BuTx) and notexin and with the PLA2 enzymes Naja nigricollis and Naja naja atra under relatively non-disruptive conditions as judged by leakage of lactate dehydrogenase (LDH) and levels of phospholipid hydrolysis. The exposure of phosphatidylcholine (PC) and phosphatidylinositol (PI) on the synaptosomal surface was investigated by means of a specific PC-exchange protein (PCEP) and a PI-specific phospholipase C (PI-PLC), respectively. Treatment of the synaptosomes with N. nigricollis PLA2, beta-BuTx and notexin did not affect the availability of PC to exchange by PCEP, but significantly increased the exposure of PI to hydrolysis by PI-PLC. In contrast, N. n. atra PLA2 slightly decreased the exposure of PC and did not affect that of PI. The differences between N. n. atra PLA2, on the one hand, and N. nigricollis PLA2, beta-BuTx and notexin, on the other hand, parallel differences in their pharmacological activities. Our earlier studies showed that PLA2 enzymes, and possibly PLA2 toxins, have a pharmacological site separate from the enzymatic site. Since in the present study the effect on PI was abolished by EDTA, the presence of an enzymatic site in addition to the pharmacological site may be required or alternatively divalent cations may be required for the effects on PI asymmetry independent of the inhibition of PLA2 by EDTA.
Collapse
Affiliation(s)
- R Shina
- Basil and Gerald Felsenstein Medical Research Center, Petah Tikva, Israel
| | | | | | | |
Collapse
|
4
|
Shina R, Crain RC, Rosenberg P, Condrea E. The asymmetric distribution of phosphatidylcholine in rat brain synaptic plasma membranes. Neurochem Int 1993; 22:189-95. [PMID: 8439772 PMCID: PMC7135640 DOI: 10.1016/0197-0186(93)90012-t] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The distribution of phosphatidylcholine between inner and outer monolayers of rat brain synaptic plasma membrane was investigated by means of a phosphatidylcholine specific exchange protein. About 70% of the total membranal phosphatidylcholine was in the outer leaflet, 33% of which was exposed and readily exchanged in intact synaptosomes while the remainder was exchangeable following osmotic shock. Permeabilization of the synaptic plasma membranes by overnight incubation in buffer or by saponin (< 0.08%) exposed an additional 30% of phosphatidylcholine to exchange, presumably from the inner cytoplasmic leaflet. Phosphatidylcholine is therefore asymmetrically distributed in the synaptosomal plasma membrane, as it is in other plasma membranes.
Collapse
Affiliation(s)
- R Shina
- Basil and Gerald Felsenstein Medical Research Center, Rogoff-Wellcome Medical Research Institute, Sackler School of Medicine, Tel Aviv University, Beilinson Medical Center, Petah Tikva, Israel
| | | | | | | |
Collapse
|
5
|
Billheimer JT, Gaylor JL. Effect of lipid composition on the transfer of sterols mediated by non-specific lipid transfer protein (sterol carrier protein2). BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1046:136-43. [PMID: 2171663 DOI: 10.1016/0005-2760(90)90180-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The rate of non-specific lipid transfer protein (nsLTP)-mediated exchange is independent of structure for dissimilar sterols: cholesterol, lanosterol, sitosterol and vitamin D-3. Conversely, the nsLTP-mediated exchange of cholesterol is markedly affected by the phospholipid composition of the donor liposome. Negatively charged phosphatidylglycerols strikingly increase cholesterol exchange in the presence of nsLTP while not altering the exchange in the absence of nsLTP. The presence of unsaturated acyl chains in the phospholipid enhances exchange. Sphingomyelin drastically decreases cholesterol exchange, as does di-O-alkylphosphatidylcholine. Decreased exchange produced by these substitutions can be reversed by addition of phosphatidylcholine. The presence of an acyl group and a negative charge in the phospholipid are critical for the nsLTP-mediated transfer of cholesterol. In addition to these studies on composition of the donor membrane, the charge on the membrane also appears critical. Maximal exchange rates accompany optimization of potential interaction of negatively charged surface and the basic nsLTP. The nsLTP also mediates an approximately equal rate of exchange of cholesterol and phosphatidylcholine. However, approaching equilibrium, only half of the phospholipid can be exchanged while there is exchange of about 90% of cholesterol. Thus, it appears that only the phospholipid in an outer membrane layer may be available whereas cholesterol is fully available. Therefore, in contrast to a 'carrier' model we suggest that nsLTP facilitates exchange by binding to the membranes, and binding is highly dependent upon lipid composition. Once bound, the protein functions as a bridge between membranes, thus, facilitating exchange.
Collapse
Affiliation(s)
- J T Billheimer
- Cardiovascular Group, E. I. Du Pont de Nemours and Company, Experimental Station, Wilmington, DE
| | | |
Collapse
|
6
|
Affiliation(s)
- R C Crain
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06268
| |
Collapse
|
7
|
Brasitus TA, Dahiya R, Dudeja PK, Bissonnette BM. Cholesterol modulates alkaline phosphatase activity of rat intestinal microvillus membranes. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68345-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
8
|
Dawidowicz EA. Lipid Exchange: Transmembrane Movement, Spontaneous Movement, and Protein-Mediated Transfer of Lipids and Cholesterol. CURRENT TOPICS IN MEMBRANES AND TRANSPORT 1987. [DOI: 10.1016/s0070-2161(08)60046-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
|
10
|
Abstract
Phospholipid transfer proteins are generally localized in the cytosolic fraction of cells and are capable of catalyzing the flux of phospholipid molecules among membranes. Artificial membranes also participate in protein-catalyzed phospholipid movements. In this review the major phospholipid transfer proteins are discussed with respect to their phospholipid substrate specificity and the contributions of membrane physical properties to this process. The phenomenon of net transfer of phospholipids is described. The use of various kinetic approaches to the study of these catalysts is reviewed. A detailed consideration of the distinct phospholipid binding and membrane interaction domains of one phospholipid transfer protein is presented. Finally, some recent applications of phospholipid transfer proteins to the examination of membrane structure and function and further directions for the continued research activity with this class of proteins are summarized.
Collapse
|
11
|
Abstract
Phospholipid transfer activity has been demonstrated in cell lysates of Saccharomyces cerevisiae, Rhodopseudomonas sphaeroides and Bacillus subtilis, and proteins facilitating phospholipid transfer from the first two organisms have recently been purified. The phospholipid transfer protein from S. cerevisiae has mol. wt. 35 000 with a specificity of transfer for phosphatidylinositol and phosphatidylcholine. The purified phospholipid transfer protein from R. sphaeroides has mol. wt. 27 000 and, although it has the ability to transfer all phospholipid species tested it displays a preference for phosphatidylglycerol. The cellular levels of phospholipid transfer activity in both S. cerevisiae and R. sphaeroides are not strictly related to the level of subcellular membranes. However, in photosynthetically grown R. sphaeroides, the distribution of the activities between soluble and membrane-associated forms is correlated with the level of intracytoplasmic membrane (a postulated membrane substrate).
Collapse
|
12
|
van Amerongen A, Teerlink T, van Heusden GP, Wirtz KW. The non-specific lipid transfer protein (sterol carrier protein 2) from rat and bovine liver. Chem Phys Lipids 1985; 38:195-204. [PMID: 4064221 DOI: 10.1016/0009-3084(85)90067-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The non-specific lipid transfer protein (nsL-TP) purified from rat and bovine liver accelerates the transfer of all common diacylglycerophospholipids, cholesterol as well as glycosphingolipids and gangliosides between membranes. These proteins have molecular weights in the order of 14 500 and are highly basic (isoelectric points between 8.5 and 9.5). The primary structure of nsL-TP from bovine liver has been elucidated yielding a single polypeptide chain of 121 aminoacid residues. The protein contains one cysteine residue, essential for transfer activity, a single tryptophan residue and lacks histidine, arginine and tyrosine residues. Rat liver nsL-TP was found to be identical to sterol carrier protein 2, stimulating the microsomal conversion of intermediates between lanosterol and cholesterol. Evidence was presented that nsL-TP binds cholesterol, suggesting that it acts as a carrier. On the other hand, failure to bind phospholipids disagrees with this proposed mode of action. A sensitive enzyme immunoassay was developed to determine levels of nsL-TP in rat tissues. By use of this assay, nsL-TP was found to be most prominently present in liver and intestinal mucosa (0.78 and 0.46 microgram nsL-TP per mg protein in 105 000 X g supernatant, respectively). Subfractionation studies showed that approx. 70% of nsL-TP was present in the membrane-free cytosol. However, application of an immunosorbent-purified antibody and protein A-linked gold particles to rat liver slices demonstrated a concentration of label over the peroxisomes. By way of immunoblotting it was shown that nsL-TP was absent from peroxisomes and that the immunoreactive material was a protein of mol. wt. 58 000. nsL-TP is capable of mediating net transfer of cholesterol to membranes, deficient in this lipid. Under such conditions of net transfer, nsL-TP stimulated the microsomal esterification of cholesterol and its conversion to pregnenolone by adrenal mitochondria. Levels of nsL-TP in Reuber H35 hepatoma cells was six per cent of that found in rat hepatocytes. This very low level of nsL-TP had no effect on de novo cholesterol biosynthesis and intracellular cholesterol esterification. These results raise doubts as to whether nsL-TP has a function in in situ cholesterol metabolism.
Collapse
|
13
|
Franck PF, De Ree JM, Roelofsen B, Op den Kamp JA. Modification of the erythrocyte membrane by a non-specific lipid transfer protein. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 778:405-11. [PMID: 6509044 DOI: 10.1016/0005-2736(84)90387-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The non-specific phospholipid transfer protein purified from bovine liver has been used to modify the phospholipid content and phospholipid composition of the membrane of intact human erythrocytes. Apart from an exchange of phosphatidylcholine between the red cell and PC-containing vesicles, the protein appeared to facilitate net transfer of phosphatidylcholine from the donor vesicles to the erythrocyte and sphingomyelin transfer in the opposite direction. Phosphatidylcholine transfer was accompanied by an equivalent transfer (on a molar basis) of cholesterol. An increase in phosphatidylcholine content in the erythrocyte membrane from 90 to 282 nmol per 100 microliters packed cells was observed. Phospholipase C treatment of modified cells showed that all of the phosphatidylcholine which was transferred to the erythrocyte was incorporated in the lipid bilayer. The nonspecific lipid transfer protein used here appeared to be a suitable tool to modify lipid content and composition of the erythrocyte membrane, and possible applications of this approach are discussed.
Collapse
|
14
|
|
15
|
Benga G, Holmes RP. Interactions between components in biological membranes and their implications for membrane function. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1984; 43:195-257. [PMID: 6087406 DOI: 10.1016/0079-6107(84)90014-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|