1
|
Torchi A, Ghamgui H, Cherif S. Basic strategies for monitoring lipase activity: A review. Anal Biochem 2025; 696:115659. [PMID: 39244002 DOI: 10.1016/j.ab.2024.115659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Lipases are involved in the basic metabolism of many organisms from simple microorganisms to mammals. Moreover, these versatile biocatalysts can catalyze various types of reactions, such as esterification, interesterification, aminolysis, hydrolysis, and many important classic organic reactions under mild conditions, which play critical roles in industrial catalysis, drug discovery, and medical diagnosis of diseases. The heterogeneous nature of this catalysis requires intimate contact between them and lipid emulsion droplets. The lipolytic activity of production isolates could be determined by monitoring the release of fatty acids. Therefore, adequate monitoring of the reaction medium is critical to gain mechanistic knowledge of lipid hydrolysis in response to changes in process conditions. This review paper provides an overview of the principles underlying different strategies for monitoring lipid hydrolysis. The strengths and limitations of each method are analyzed to provide practical guidance for future research.
Collapse
Affiliation(s)
- Ayda Torchi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Department of Biology, National Engineering School of Sfax (ENIS), 3038, University of Sfax, Tunisia
| | - Hanen Ghamgui
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Department of Biology, National Engineering School of Sfax (ENIS), 3038, University of Sfax, Tunisia.
| | - Slim Cherif
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Department of Biology, National Engineering School of Sfax (ENIS), 3038, University of Sfax, Tunisia
| |
Collapse
|
2
|
Menezes HSG, Costa-Latgé SG, Genta FA, Napoleão TH, Paiva PMG, Romão TP, Silva-Filha MHNL. A Culex quinquefasciatus strain resistant to the binary toxin from Lysinibacillus sphaericus displays altered enzyme activities and energy reserves. Parasit Vectors 2023; 16:273. [PMID: 37559134 PMCID: PMC10413512 DOI: 10.1186/s13071-023-05893-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/20/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND The resistance of a Culex quinquefasciatus strain to the binary (Bin) larvicidal toxin from Lysinibacillus sphaericus is due to the lack of expression of the toxin's receptors, the membrane-bound Cqm1 α-glucosidases. A previous transcriptomic profile of the resistant larvae showed differentially expressed genes coding Cqm1, lipases, proteases and other genes involved in lipid and carbohydrate metabolism. This study aimed to investigate the metabolic features of Bin-resistant individuals by comparing the activity of some enzymes, energy reserves, fertility and fecundity to a susceptible strain. METHODS The activity of specific enzymes was recorded in midgut samples from resistant and susceptible larvae. The amount of lipids and reducing sugars was determined for larvae and adults from both strains. Additionally, the fecundity and fertility parameters of these strains under control and stress conditions were examined. RESULTS Enzyme assays showed that the esterase activities in the midgut of resistant larvae were significantly lower than susceptible ones using acetyl-, butyryl- and heptanoyl-methylumbelliferyl esthers as substrates. The α-glucosidase activity was also reduced in resistant larvae using sucrose and a synthetic substrate. No difference in protease activities as trypsins, chymotrypsins and aminopeptidases was detected between resistant and susceptible larvae. In larval and adult stages, the resistant strain showed an altered profile of energy reserves characterized by significantly reduced levels of lipids and a greater amount of reducing sugars. The fertility and fecundity of females were similar for both strains, indicating that those changes in energy reserves did not affect these reproductive parameters. CONCLUSIONS Our dataset showed that Bin-resistant insects display differential metabolic features co-selected with the phenotype of resistance that can potentially have effects on mosquito fitness, in particular, due to the reduced lipid accumulation.
Collapse
Affiliation(s)
- Heverly Suzany G Menezes
- Department of Entomology, Instituto Aggeu Magalhães-FIOCRUZ, Av. Moraes Rego s/n, Recife, PE, 50740-465, Brazil
| | - Samara G Costa-Latgé
- Laboratory of Insect Biochemistry and Physiology, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Fernando A Genta
- Laboratory of Insect Biochemistry and Physiology, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, RJ, 21045-900, Brazil
- National Institute for Molecular Entomology, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Thiago H Napoleão
- Department of Biochemistry, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Patrícia M G Paiva
- Department of Biochemistry, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Tatiany P Romão
- Department of Entomology, Instituto Aggeu Magalhães-FIOCRUZ, Av. Moraes Rego s/n, Recife, PE, 50740-465, Brazil
| | - Maria Helena N L Silva-Filha
- Department of Entomology, Instituto Aggeu Magalhães-FIOCRUZ, Av. Moraes Rego s/n, Recife, PE, 50740-465, Brazil.
- National Institute for Molecular Entomology, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
3
|
Ramakrishna TRB, Ashton TD, Marshall SN, Nalder TD, Yang W, Barrow CJ. Effect of Triton X-100 on the Activity and Selectivity of Lipase Immobilized on Chemically Reduced Graphene Oxides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9202-9214. [PMID: 34286574 DOI: 10.1021/acs.langmuir.1c01386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The effect of support hydrophobicity on lipase activity and substrate selectivity was investigated with and without Triton X-100 (TX-100). Lipases from Thermomyces lanuginosa (TL) and Alcaligenes sp. (QLM) were immobilized on graphene oxide (GO) and a range of chemically reduced graphene oxides (CRGOs) with different levels of surface hydrophobicity. Activity assays using 4-hydroxy-N-propyl-1,8-naphthalimide (NAP) esters of varying chain lengths (NAP-butyrate (NAP-B), NAP-octanoate (NAP-O), and NAP-palmitate (NAP-P)) showed that the activity of immobilized QLM and TL decreased by more than 60% on GO and 80% on CRGO (2 h), with activity decreasing further as surface hydrophobicity of the CRGOs increased. Across the hydrophobicity range of GO/CRGOs, the substrate selectivity of QLM shifted from more readily hydrolyzing NAP-P to NAP-B, while TL retained its substrate selectivity for NAP-O. Lipase TL was also shown to desorb from GO and 2 h CRGO when mixed with NAP-O and NAP-P, whereas QLM did not. Circular dichroism analyses of the lipase α-helix content correlate to the observed activity data, with decreases in the α-helical content (40% in TL and 20% in QLM relative to free lipase) consistent with decreases in activity after immobilization on GO. α-Helical content decreased even further as the surface hydrophobicity of CRGOs increased. Attenuated total reflectance-Fourier transform infrared spectroscopy also showed significant changes to the lipase secondary structure upon immobilization. The addition of TX-100 into the activity assay modified the substrate selectivity of immobilized QLM, improving the activity against NAP-O (90%) and NAP-P (67%) compared to the activity measured without TX-100. It was shown that TX-100 primarily affected the activity of QLM by interacting with the ester substrate and the lipase itself. This study provides an improved understanding of how support hydrophobicity and the presence of TX-100 can affect activity/selectivity of lipases immobilized on hydrophobic supports.
Collapse
Affiliation(s)
- Tejaswini R B Ramakrishna
- School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
- Seafood Unit, The New Zealand Institute for Plant & Food Research Limited, 293-297 Akersten Street, Nelson 7010, New Zealand
| | - Trent D Ashton
- School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Susan N Marshall
- Seafood Unit, The New Zealand Institute for Plant & Food Research Limited, 293-297 Akersten Street, Nelson 7010, New Zealand
| | - Tim D Nalder
- School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
- Seafood Unit, The New Zealand Institute for Plant & Food Research Limited, 293-297 Akersten Street, Nelson 7010, New Zealand
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Colin J Barrow
- School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
4
|
High-Throughput, Fluorescence-Based Esterase Activity Assay for Assessing Polysorbate Degradation Risk during Biopharmaceutical Development. Pharm Res 2021; 38:397-413. [PMID: 33655394 DOI: 10.1007/s11095-021-03011-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE Hydrolytic degradation of polysorbate during 2-8°C storage of monoclonal antibody drug products has been attributed to residual enzymes (e.g., esterases) from bioprocessing steps. Robust detection of esterase activity using sensitive, non-polysorbate surrogate substrates can provide an alternate method to assess polysorbate degradation risk, if the correlation between the esterase activity and polysorbate degradation is established. METHODS A general esterase activity assay was developed as a monitoring and characterization tool during bioprocess development of monoclonal antibodies. RESULTS We report a fluorescence plate-based assay for quantifying esterase activity, utilizing 4-methylumbelliferyl caprylate (MU-C8) as the esterase substrate. The assay was first assessed for substrate, inhibitor and pH specificity using both model enzymes and purified protein samples. The assay was then extensively tested to understand sample matrix effects on activity rates. CONCLUSIONS The use of this high-throughput method will allow for rapid characterization of protein samples in under three hours. The esterase activity correlated directly with polysorbate degradation and can provide valuable information on polysorbate degradation risk throughout drug development.
Collapse
|
5
|
Almeida JM, Alnoch RC, Souza EM, Mitchell DA, Krieger N. Metagenomics: Is it a powerful tool to obtain lipases for application in biocatalysis? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140320. [PMID: 31756433 DOI: 10.1016/j.bbapap.2019.140320] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
In recent years, metagenomic strategies have been widely used to isolate and identify new enzymes from uncultivable components of microbial communities. Among these enzymes, various lipases have been obtained from metagenomic libraries from different environments and characterized. Although many of these lipases have characteristics that could make them interesting for application in biocatalysis, relatively little work has been done to evaluate their potential to catalyze industrially important reactions. In the present article, we highlight the latest research on lipases obtained through metagenomic tools, focusing on studies of activity and stability and investigations of application in biocatalysis. We also discuss the challenges of metagenomic approaches for the bioprospecting of new lipases.
Collapse
Affiliation(s)
- Janaina Marques Almeida
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil
| | - Robson Carlos Alnoch
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil
| | - Emanuel Maltempi Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil
| | - David Alexander Mitchell
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil
| | - Nadia Krieger
- Departamento de Química, Universidade Federal do Paraná, Cx.P. 19032 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil.
| |
Collapse
|
6
|
4-Hydroxy-N-propyl-1,8-naphthalimide esters: New fluorescence-based assay for analysing lipase and esterase activity. Biochimie 2016; 128-129:127-32. [PMID: 27478942 DOI: 10.1016/j.biochi.2016.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/27/2016] [Indexed: 11/21/2022]
Abstract
Research using 1,8-naphthalimide derivatives has expanded rapidly in recent years owing to their cell-permeable nature, ability to target certain cellular locations and fluorescent properties. Here we describe the synthesis of three new esters of 4-hydroxy-N-propyl-1,8-naphthalimide (NAP) and the development of a simple and sensitive assay protocol to measure the activity of carboxylester hydrolases. The NAP fluorophore was esterified with short (butyrate), medium (octanoate) and long (palmitate) chain fatty acids. The esters were spectroscopically characterised and their properties investigated for their suitability as assay substrates. The esters were found to be relatively stable under the conditions of the assay and levels of spontaneous hydrolysis were negligible. Non-specific hydrolysis by proteins such as bovine serum albumin was also minimal. A simple and rapid assay methodology was developed and used to analyse a range of commercially available enzymes that included enzymes defined as lipases, esterases and phospholipases. Clear differences were observed between the enzyme classes with respect to the hydrolysis of the various chain length esters, with lipases preferentially hydrolysing the medium chain ester, whereas esterases reacted more favourably with the short ester. The assay was found to be highly sensitive with the fluorophore detectable to the low nM range. These esters provide alternate substrates from established coumarin-based fluorophores, possessing distinctly different excitation (447 nm) and emission (555 nm) optima. Absorbing at 440-450 nm also offers the flexibility of analysis by UV-visible spectrophotometry. This represents the first instance of a naphthalimide-derived compound being used to analyse these enzymes.
Collapse
|
7
|
Baur C, Krewinkel M, Kranz B, von Neubeck M, Wenning M, Scherer S, Stoeckel M, Hinrichs J, Stressler T, Fischer L. Quantification of the proteolytic and lipolytic activity of microorganisms isolated from raw milk. Int Dairy J 2015. [DOI: 10.1016/j.idairyj.2015.04.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
A Sensitive and Robust Method for Direct Determination of Lipolytic Activity in Natural Milk Environment. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0233-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Hasan F, Shah AA, Hameed A. Methods for detection and characterization of lipases: A comprehensive review. Biotechnol Adv 2009; 27:782-798. [PMID: 19539743 DOI: 10.1016/j.biotechadv.2009.06.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 06/03/2009] [Accepted: 06/05/2009] [Indexed: 11/16/2022]
Abstract
Microbial lipases are very prominent biocatalysts because of their ability to catalyze a wide variety of reactions in aqueous and non-aqueous media. The chemo-, regio- and enantio-specific behaviour of these enzymes has caused tremendous interest among scientists and industrialists. Lipases from a large number of bacterial, fungal and a few plant and animal sources have been purified to homogeneity. This article presents a critical review of different strategies which have been employed for the detection, purification and characterization of microbial lipases.
Collapse
Affiliation(s)
- Fariha Hasan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aamer Ali Shah
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Abdul Hameed
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
10
|
Fujii R, Utsunomiya Y, Hiratake J, Sogabe A, Sakata K. Highly sensitive active-site titration of lipase in microscale culture media using fluorescent organophosphorus ester. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1631:197-205. [PMID: 12633686 DOI: 10.1016/s1388-1981(03)00006-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The fluorescent organophosphorus esters, diethyl 4-methylumbelliferyl phosphate (1), ethyl hexyl 4-methylumbelliferyl phosphate (2) and ethyl 4-methylumbelliferyl heptylphosphonate (3) have been synthesized and evaluated as a sensitive active-site titrant of lipase. The phosphorus esters 1, 2 and 3 inactivated the lipase from Pseudomonas aeruginosa (LPL-312) with a second-order rate constant for enzyme inactivation (k(on)) of 1.8, 32 and 5600 s(-1) M(-1), respectively. The long-chain phosphonate 3 turned out to be the most potent inactivator of the lipase to release a stoichiometric amount of highly fluorescent 4-methylumbelliferone (4MU) as a leaving group. By using the phosphate 3 as an active-site titrant, the low concentration (4.5 nM) of the active lipase was titrated successfully. The highly sensitive active-site titration with 3 enabled the direct determination of the concentration of the active lipase expressed in a microscale culture medium. Although the expression level differed significantly from one culture to another, the titrated concentration of the active lipase was proportional to the apparent activity for all the independent cultures. The molecular activity calculated for the expressed lipase was found to be the same as that of the purified lipase. The present active-site titration method is widely applicable to the biocatalytic engineering of lipases such as directed evolution, site-directed mutagenesis, chemical modification and immobilization.
Collapse
Affiliation(s)
- Ryota Fujii
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
11
|
|
12
|
Use of naturally fluorescent triacylglycerols from Parinari glaberrimum to detect low lipase activities from Arabidopsis thaliana seedlings. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)32106-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Thomson CA, Delaquis PJ, Mazza G. Detection and measurement of microbial lipase activity: a review. Crit Rev Food Sci Nutr 1999; 39:165-87. [PMID: 10198753 DOI: 10.1080/10408399908500492] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- C A Thomson
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, British Columbia, Canada
| | | | | |
Collapse
|
14
|
Comménil P, Belingheri L, Sancholle M, Dehorter B. Purification and properties of an extracellular lipase from the fungus Botrytis cinerea. Lipids 1995; 30:351-6. [PMID: 7609604 DOI: 10.1007/bf02536044] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An extracellular lipase (EC 3.1.1.3) from the fungus Botrytis cinerea has been purified to homogeneity and characterized. The purification included ammonium sulfate fractionation and sequential column chromatography. The purification of the preparation was 31-fold and recovery yield was 21%. The purified enzyme was associated with esterase activity according to activity staining on polyacrylamide gel. The molecular weight was determined as 60 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and estimated at 72 kDa using gel filtration, which suggests that the enzyme may be a monomer. The isoelectric point was 6.5, and optimal activity was obtained at 38 degrees C and pH 6.0. This lipase showed a high specificity for synthetic substrates containing long-chain unsaturated fatty acids using umbelliferone esters. The effect of beta-cyclodextrin on the hydrolysis of olive oil has been studied. The specific activity was 25 mumole/min/mg in the absence of beta-cyclodextrin and 132 mumole/min/mg in its presence.
Collapse
Affiliation(s)
- P Comménil
- Laboratoire de Biologie et Physiologie Végétale, Université de Reims, France
| | | | | | | |
Collapse
|
15
|
Chen Y, Hong RT. Synthesis of polyesters containing coumarin dimer components by photopolymerization of 7,7?-coumarinyl polymethylene dicarboxylates. JOURNAL OF POLYMER RESEARCH 1994. [DOI: 10.1007/bf01374553] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|