1
|
Genus Smenospongia: Untapped Treasure of Biometabolites—Biosynthesis, Synthesis, and Bioactivities. Molecules 2022; 27:molecules27185969. [PMID: 36144705 PMCID: PMC9501515 DOI: 10.3390/molecules27185969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Marine sponges continue to attract remarkable attention as one of the richest pools of bioactive metabolites in the marine environment. The genus Smenospongia (order Dictyoceratida, family Thorectidae) sponges can produce diverse classes of metabolites with unique and unusual chemical skeletons, including terpenoids (sesqui-, di-, and sesterterpenoids), indole alkaloids, aplysinopsins, bisspiroimidazolidinones, chromenes, γ-pyrones, phenyl alkenes, naphthoquinones, and polyketides that possessed diversified bioactivities. This review provided an overview of the reported metabolites from Smenospongia sponges, including their biosynthesis, synthesis, and bioactivities in the period from 1980 to June 2022. The structural characteristics and diverse bioactivities of these metabolites could attract a great deal of attention from natural-product chemists and pharmaceuticals seeking to develop these metabolites into medicine for the treatment and prevention of certain health concerns.
Collapse
|
2
|
Kendel M, Wielgosz-Collin G, Bertrand S, Roussakis C, Bourgougnon N, Bedoux G. Lipid Composition, Fatty Acids and Sterols in the Seaweeds Ulva armoricana, and Solieria chordalis from Brittany (France): An Analysis from Nutritional, Chemotaxonomic, and Antiproliferative Activity Perspectives. Mar Drugs 2015; 13:5606-28. [PMID: 26404323 PMCID: PMC4584343 DOI: 10.3390/md13095606] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 08/07/2015] [Accepted: 08/14/2015] [Indexed: 12/15/2022] Open
Abstract
Lipids from the proliferative macroalgae Ulva armoricana (Chlorophyta) and Solieria chordalis (Rhodophyta) from Brittany, France, were investigated. The total content of lipids was 2.6% and 3.0% dry weight for U. armoricana and S. chordalis, respectively. The main fractions of S. chordalis were neutral lipids (37%) and glycolipids (38%), whereas U. armoricana contained mostly neutral lipids (55%). Polyunsaturated fatty acids (PUFA) represented 29% and 15% of the total lipids in U. armoricana and S. chordalis, respectively. In both studied algae, the phospholipids were composed of PUFA for 18%. In addition, PUFA were shown to represent 9% and 4.5% of glycolipids in U. armoricana and S. chordalis, respectively. The essential PUFA were 16:4n-3, 18:4n-3, 18:2n-3, 18:2n-6, and 22:6n-3 in U. armoricana, and 20:4n-6 and 20:5n-3 in S. chordalis. It is important to notice that six 2-hydroxy-, three 3-hydroxy-, and two monounsaturated hydroxy fatty acids were also identified and may provide a chemotaxonomic basis for algae. These seaweeds contained interesting compounds such as squalene, α-tocopherol, cholest-4-en-3-one and phytosterols. The antiproliferative effect was evaluated in vitro on human non-small-cell bronchopulmonary carcinoma line (NSCLC-N6) with an IC50 of 23 μg/mL for monogalactosyldiacylglycerols isolated from S. chordalis and 24 μg/mL for digalactosyldiacylglycerols from U. armoricana. These results confirm the potentialities of valorization of these two species in the fields of health, nutrition and chemotaxonomy.
Collapse
Affiliation(s)
- Melha Kendel
- University of South Brittany, EA 3884, LBCM, IUEM, F-56000 Vannes, France; E-Mails: (M.K.); (N.B.)
| | - Gaëtane Wielgosz-Collin
- Faculté des Sciences Pharmaceutiques et Biologiques, LUNAM, Université de Nantes, Groupe Mer-Molécules-Santé MMS, EA 2160, Institut Universitaire Mer et Littoral FR3473 CNRS, 9 Rue Bias, BP 53508, F-44035 Nantes Cedex 1, France; E-Mails: (G.W.-C.); (S.B.)
| | - Samuel Bertrand
- Faculté des Sciences Pharmaceutiques et Biologiques, LUNAM, Université de Nantes, Groupe Mer-Molécules-Santé MMS, EA 2160, Institut Universitaire Mer et Littoral FR3473 CNRS, 9 Rue Bias, BP 53508, F-44035 Nantes Cedex 1, France; E-Mails: (G.W.-C.); (S.B.)
| | - Christos Roussakis
- Faculté des Sciences Pharmaceutiques et Biologiques, LUNAM Université, Université de Nantes, IICIMED/ERATU-EA 1155 Cancer du Poumon et Cibles Moléculaires, 1 Rue Gaston Veil, BP 53508, F-44035 Nantes Cedex 01, France; E-Mail:
| | - Nathalie Bourgougnon
- University of South Brittany, EA 3884, LBCM, IUEM, F-56000 Vannes, France; E-Mails: (M.K.); (N.B.)
| | - Gilles Bedoux
- University of South Brittany, EA 3884, LBCM, IUEM, F-56000 Vannes, France; E-Mails: (M.K.); (N.B.)
| |
Collapse
|
3
|
Kendel M, Barnathan G, Fleurence J, Rabesaotra V, Wielgosz-Collin G. Non-methylene interrupted and hydroxy fatty acids in polar lipids of the alga Grateloupia turuturu over the four seasons. Lipids 2013; 48:535-45. [PMID: 23515999 DOI: 10.1007/s11745-013-3783-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/03/2013] [Indexed: 10/27/2022]
Abstract
Phospholipids (PL) and glycolipids (GL) FA in the edible Rhodophyta Grateloupia turuturu, from Brittany, France, were investigated over four seasons. The major lipid class was GL in all seasons (around 45 %). More than 80 FA occurred in polar lipids, with chains from C12 to C26, identified as methyl esters and N-acyl pyrrolidides by gas chromatography-mass spectrometry (GC-MS). PUFA occurred at up to 47.1 % (summer) in PL, and up to 43.6 % (summer) in GL. The major PUFA were 20:5n-3 (12.2 % in PL and 29.0 % in GL) and 20:4n-6 (25.6 % in PL and 10.4 % in GL). The unusual 18:3n-7 acid was identified in PL up to 2.2 %. Several minor unsaturated FA were identified in PL and are previously unreported in seaweeds, namely 14-tricosenoic, 15-tetracosenoic, 5,11-octadecadienoic and 5,9-nonadecadienoic. Also unprecedented in seaweeds, ten 2-hydroxy and three 3-hydroxy FA occurred mainly in PL, 13.9 % in spring with the 3-hydroxyhexadecanoic acid as the major one (8.1 % winter). Three n-9 monounsaturated 2-hydroxy FA occurred in PL. The 2-hydroxy-15-tetracosenoic acid was characterized as the dimethyl disulfide adduct of its methyl ester. The 2-hydroxy-16-pentacosenoic and 2-hydroxy-17-hexacosenoic acids were identified by comparison of mass spectra and GC mobilities with those of the 2-hydroxy-15-tetracosenoic acid, and of other homogeneous FA series. These rare n-9 monounsaturated 2-hydroxy FA are unprecedented in seaweeds.
Collapse
Affiliation(s)
- Melha Kendel
- Faculté des Sciences Pharmaceutiques et Biologiques, LUNAM Université, Université de Nantes, Groupe Mer-Molécules-Santé MMS, EA 2160, Institut Universitaire Mer et Littoral FR3473 CNRS, 9 Rue Bias, BP 53508, 44035 Nantes Cedex 1, France
| | | | | | | | | |
Collapse
|
4
|
Magnusson CD, Haraldsson GG. Ether lipids. Chem Phys Lipids 2011; 164:315-40. [PMID: 21635876 DOI: 10.1016/j.chemphyslip.2011.04.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 04/11/2011] [Accepted: 04/28/2011] [Indexed: 11/25/2022]
Abstract
The naturally occurring 1-O-alkyl-sn-glycerols and their methoxylated congeners, 1-O-(2'-methoxyalkyl)-sn-glycerols, are biologically active compounds, ubiquitously found in nature as diacyl glyceryl ether lipids and phosphoether lipids. The chief objective of this article is to provide a comprehensive and up to date review on such ether lipids. The occurrence and distribution of these compounds in nature are extensively reviewed, their chemical structure and molecular variety, their biosynthesis and chemical synthesis and, finally, their various biological effects are described and discussed. An unprecedented biosynthesis of the 2'-methoxylated alkylglycerols is proposed. The first synthesis of enantiopure (Z)-(2'R)-1-O-(2'-methoxyhexadec-4'-enyl)-sn-glycerol, the most prevalent 2'-methoxylated type alkylglycerol present in cartilaginous fish, is described. It was accomplished by a highly convergent five step process.
Collapse
|
5
|
Graichen FHM, Warden AC, Kyi S, O'Shea MS. Synthesis of Diyne Substituted 2-Hydroxy Acids, Esters, and Amides. Aust J Chem 2010. [DOI: 10.1071/ch09639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A series of diyne substituted 2-hydroxy acids and derivatives have been prepared and characterized. Alkylation of butane-2,3-diacetal protected glycolic acid with haloalkyl substituted diyne compounds gave the corresponding diacetal protected diyne substituted 2-hydroxy acids. Diacetal deprotection through acid mediated hydrolysis, transesterification, or aminolysis afforded the 2-hydroxy-diyne acid, ester, or amide derivatives, respectively. A novel class of polydiacetylenes was produced through topochemical polymerization of a 2-hydroxy diyne acid and compared with the polymerization of non-hydroxylated diyne acids.
Collapse
|
6
|
Řezanka T, Sigler K. Odd-numbered very-long-chain fatty acids from the microbial, animal and plant kingdoms. Prog Lipid Res 2009; 48:206-38. [DOI: 10.1016/j.plipres.2009.03.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/17/2009] [Accepted: 03/23/2009] [Indexed: 10/21/2022]
|
7
|
Bergé JP, Barnathan G. Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 96:49-125. [PMID: 16566089 DOI: 10.1007/b135782] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Because of their characteristic living environments, marine organisms produce a variety of lipids. Fatty acids constitute the essential part of triglycerides and wax esters, which are the major components of fats and oils. Nevertheless, phospholipids and glycolipids have considerable importance and will be taken into account, especially the latter compounds that excite increasing interest regarding their promising biological activities. Thus, in addition to the major polyunsaturated fatty acids (PUFA) such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, a great number of various fatty acids occur in marine organisms, e.g. saturated, mono- and diunsaturated, branched, halogenated, hydroxylated, methoxylated, non-methylene-interrupted. Various unprecedented chemical structures of fatty acids, and lipid-containing fatty acids, have recently been discovered, especially from the most primitive animals such as sponges and gorgonians. This review of marine lipidology deals with recent advances in the field of fatty acids since the end of the 1990s. Different approaches will be followed, mainly developing biomarkers of trophic chains in marine ecosystems and of chemotaxonomic interest, reporting new structures, especially those with biological activities or biosynthetic interest. An important part of this review will be devoted to the major PUFA, their relevance to health and nutrition, their biosynthesis, their sources (usual and promising) and market.
Collapse
Affiliation(s)
- Jean-Pascal Bergé
- Centre de Nantes, Laboratoire Génie Alimentaire, Département Valorisation des Produits, Institut Français pour l'Exploitation de la Mer (IFREMER), BP21105, 44311 Nantes 03, France.
| | | |
Collapse
|
8
|
Nechev J, Christie WW, Robaina R, de Diego F, Popov S, Stefanov K. Lipid composition of the spongeVerongia aerophoba from the Canary Islands. EUR J LIPID SCI TECH 2002. [DOI: 10.1002/1438-9312(200212)104:12<800::aid-ejlt800>3.0.co;2-e] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Phospholipid Fatty Acid Composition of Gorgonians of the Genus Eunicea: Further Identification of Tetracosapolyenoic Acids. Comp Biochem Physiol B Biochem Mol Biol 1997. [DOI: 10.1016/s0305-0491(97)00056-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Jie MSFLK, Pasha MK, Syed-Rahmatullah MSK. Fatty acids, fatty acid analogues and their derivatives. Nat Prod Rep 1997. [DOI: 10.1039/np9971400163] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Carballeira NM, Sostre A, Rodríguez AD. Phospholipid fatty acid composition of gorgonians of the genus Pseudopterogorgia: identification of tetracosapolyenoic acids. Comp Biochem Physiol B Biochem Mol Biol 1996; 113:781-3. [PMID: 8925444 DOI: 10.1016/0305-0491(95)02108-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The phospholipid fatty acid composition of the Caribbean gorgonians Pseudopterogorgia acerosa (Pallas), Pseudopterogorgia americana (Gmelin), Pseudopterogorgia bipinnata (Verrill) and Pseudopterogorgia rigida (Bielschowsky) is described for the first time. The main phospholipids identified were phosphatidylethanolamine, phosphatidylcholine and phosphatidylserine. All four gorgonians presented a similar phospholipid fatty acid composition. The main fatty acids were 16:0, 18:3(n-6), 18:4(n-3), 20:4(n-6), 22:6(n-3), 24:5(n-6) and 24:6(n-3). In all of the studied Pseudopterogorgia gorgonians, high amounts of the tetracosapolyenoic fatty acids 24:5(n-6) and 24:6(n-3) were identified. In the four gorgonians studied, n-6 polyunsaturated fatty acids predominated. These results suggest that the occurrence of tetracosapolyenoic fatty acids in the Gorgoniidae is more general than previously recognized.
Collapse
Affiliation(s)
- N M Carballeira
- Department of Chemistry, University of Puerto Rico, San Juan, 00931-3346
| | | | | |
Collapse
|
12
|
Barnathan G, Doumenq P, Njinkoué JM, Mirallès J, Debitus C, Lévi C, Komprobst JM. Sponge fatty acids. 3. Occurrence of series of n−7 monoenoic andiso-5,9 dienoic long-chain fatty acids in the phospholipids of the marine spongeCinachyrella aff.schulzei keller. Lipids 1994. [DOI: 10.1007/bf02536335] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|