Zhao Y, Dezerald L, Pozuelo M, Zhou X, Marian J. Simulating the mechanisms of serrated flow in interstitial alloys with atomic resolution over diffusive timescales.
Nat Commun 2020;
11:1227. [PMID:
32144258 PMCID:
PMC7060222 DOI:
10.1038/s41467-020-15085-3]
[Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 02/17/2020] [Indexed: 11/21/2022] Open
Abstract
The Portevin-Le Chatelier (PLC) effect is a phenomenon by which plastic slip in metallic materials becomes unstable, resulting in jerky flow and the onset of inhomogeneous deformation. The PLC effect is thought to be fundamentally caused by the dynamic interplay between dislocations and solute atoms. However, this interplay is almost always inaccessible experimentally due to the extremely fine length and time scales over which it occurs. In this paper, simulations of jerky flow in W-O interstitial solid solutions reveal three dynamic regimes emerging from the simulated strain rate-temperature space: one resembling standard solid solution strengthening, another one mimicking solute cloud formation, and a third one where dislocation/solute coevolution leads to jerky flow as a precursor of dynamic strain aging. The simulations are carried out in a stochastic framework that naturally captures rare events in a rigorous manner, providing atomistic resolution over diffusive time scales using no adjustable parameters.
Understanding the plastic deformation mechanism within specific ranges of temperature and strain in metal alloys is of great technological importance. Here the authors report on dynamic simulations of dislocation–solute coevolution in tungsten crystals containing a few atomic parts per million of interstitial oxygen and their relation to unstable plastic flow.
Collapse