1
|
Jenkins BM, Danoix F, Gouné M, Bagot PAJ, Peng Z, Moody MP, Gault B. Reflections on the Analysis of Interfaces and Grain Boundaries by Atom Probe Tomography. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:247-257. [PMID: 32186276 DOI: 10.1017/s1431927620000197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Interfaces play critical roles in materials and are usually both structurally and compositionally complex microstructural features. The precise characterization of their nature in three-dimensions at the atomic scale is one of the grand challenges for microscopy and microanalysis, as this information is crucial to establish structure-property relationships. Atom probe tomography is well suited to analyzing the chemistry of interfaces at the nanoscale. However, optimizing such microanalysis of interfaces requires great care in the implementation across all aspects of the technique from specimen preparation to data analysis and ultimately the interpretation of this information. This article provides critical perspectives on key aspects pertaining to spatial resolution limits and the issues with the compositional analysis that can limit the quantification of interface measurements. Here, we use the example of grain boundaries in steels; however, the results are applicable for the characterization of grain boundaries and transformation interfaces in a very wide range of industrially relevant engineering materials.
Collapse
Affiliation(s)
- Benjamin M Jenkins
- Department of Materials, University of Oxford, Parks Road, OxfordOX1 3PH, UK
| | - Frédéric Danoix
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, Rouen76000, France
| | - Mohamed Gouné
- Institut de la Matière Condensée de Bordeaux (ICMCB), CNRS, Université de Bordeaux, Bordeaux, France
| | - Paul A J Bagot
- Department of Materials, University of Oxford, Parks Road, OxfordOX1 3PH, UK
| | - Zirong Peng
- Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, Düsseldorf, Germany
| | - Michael P Moody
- Department of Materials, University of Oxford, Parks Road, OxfordOX1 3PH, UK
| | - Baptiste Gault
- Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, Düsseldorf, Germany
- Department of Materials, Imperial College London, Royal School of Mine, Exhibition Road, LondonSW7 2AZ, UK
| |
Collapse
|
2
|
Ab Initio Study of the Combined Effects of Alloying Elements and H on Grain Boundary Cohesion in Ferritic Steels. METALS 2019. [DOI: 10.3390/met9030291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydrogen enhanced decohesion is expected to play a major role in ferritic steels, especially at grain boundaries. Here, we address the effects of some common alloying elements C, V, Cr, and Mn on the H segregation behaviour and the decohesion mechanism at a Σ 5 ( 310 ) [ 001 ] 36.9 ∘ grain boundary in bcc Fe using spin polarized density functional theory calculations. We find that V, Cr, and Mn enhance grain boundary cohesion. Furthermore, all elements have an influence on the segregation energies of the interstitial elements as well as on these elements’ impact on grain boundary cohesion. V slightly promotes segregation of the cohesion enhancing element C. However, none of the elements increase the cohesion enhancing effect of C and reduce the detrimental effect of H on interfacial cohesion at the same time. At an interface which is co-segregated with C, H, and a substitutional element, C and H show only weak interaction, and the highest work of separation is obtained when the substitute is Mn.
Collapse
|
3
|
Enomoto M, Nojiri N, Sato Y. Effects of Vanadium and Niobium on the Nucleation Kinetics of Proeutectoid Ferrite at Austenite Grain Boundaries in Fe–C and Fe–C–Mn Alloys. ACTA ACUST UNITED AC 1994. [DOI: 10.2320/matertrans1989.35.859] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- M. Enomoto
- Department of Materials Science, Ibaraki University
| | - N. Nojiri
- Department of Materials Science, Ibaraki University
| | - Y. Sato
- Department of Materials Science, Ibaraki University
| |
Collapse
|
4
|
Liu SK, Zhang J. The influence of the Si and Mn concentrations on the kinetics of the bainite transformation in Fe-C-Si-Mn alloys. ACTA ACUST UNITED AC 1990. [DOI: 10.1007/bf02672566] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Reynolds WT, Li FZ, Shui CK, Aaronson HI. The Incomplete transformation phenomenon in Fe-C-Mo alloys. ACTA ACUST UNITED AC 1990. [DOI: 10.1007/bf02672561] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|