1
|
Al-Iedani O, Lea R, Ribbons K, Ramadan S, Lechner-Scott J. Neurometabolic changes in multiple sclerosis: Fingolimod versus beta interferon or glatiramer acetate therapy. J Neuroimaging 2022; 32:1109-1120. [PMID: 35922880 DOI: 10.1111/jon.13032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Fingolimod has been shown to be more effective in reducing relapse rate and disability than injectable therapies in clinical trials. An increase in N-acetylaspartate (NAA) as measured by MR spectroscopy is correlated with maintaining axonal metabolic functions. This study compared the neurometabolic and volumetric changes in relapsing-remitting multiple sclerosis (RRMS) patients on fingolimod or injectable therapies with healthy controls (HCs). METHODS Ninety-eight RRMS (52 on fingolimod, 46 on injectable therapies (27 on glatiramer acetate and 19 on interferon) were age and sex-matched to 51 HCs. RRMS patients underwent cognitive, fatigue, and mental health assessments, as well as an Expanded disability status scale (EDSS). MRI/S was acquired from the hippocampus, posterior cingulate gyrus (PCG), and prefrontal cortex (PFC). Volumetric and neurometabolic measures were compared across cohorts using a univariate general linear model and correlated with clinical severity and neuropsychological scores. RESULTS Clinical parameters, MR-volumetric, and neurometabolic profiles showed no differences between treatment groups (p > .05). Compared to HCs, both RRMS cohorts showed volume changes in white matter (-13%), gray matter (-16%), and cerebral spinal fluid (CSF) (+17-23%), as well as reduced NAA (-17%, p = .001, hippocampus), (-7%, p = .001, PCG), and (-9%, p = .001, PFC). MRI/S metrics in three regions were moderately correlated with cognition and fatigue functions. CONCLUSION While both treatment arms showed overall similar volumetric and neurometabolic profiles, longitudinal studies are warranted to clarify neurometabolic changes and associations with treatment efficacy.
Collapse
Affiliation(s)
- Oun Al-Iedani
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Rodney Lea
- Hunter Medical Research Institute, New Lambton, New South Wales, Australia.,Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Karen Ribbons
- Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Saadallah Ramadan
- Hunter Medical Research Institute, New Lambton, New South Wales, Australia.,School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Jeannette Lechner-Scott
- Hunter Medical Research Institute, New Lambton, New South Wales, Australia.,School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Department of Neurology, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
2
|
Thomas AM, Barkhof F, Bulte JWM. Opportunities for Molecular Imaging in Multiple Sclerosis Management: Linking Probe to Treatment. Radiology 2022; 303:486-497. [PMID: 35471110 PMCID: PMC9131169 DOI: 10.1148/radiol.211252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Imaging has been a critical component of multiple sclerosis (MS) management for nearly 40 years. The visual information derived from structural MRI, that is, signs of blood-brain barrier disruption, inflammation and demyelination, and brain and spinal cord atrophy, are the primary metrics used to evaluate therapeutic efficacy in MS. The development of targeted imaging probes has expanded our ability to evaluate and monitor MS and its therapies at the molecular level. Most molecular imaging probes evaluated for MS applications are small molecules initially developed for PET, nearly half of which are derived from U.S. Food and Drug Administration-approved drugs and those currently undergoing clinical trials. Superparamagnetic and fluorinated particles have been used for tracking circulating immune cells (in situ labeling) and immunosuppressive or remyelinating therapeutic stem cells (ex vivo labeling) clinically using proton (hydrogen 1 [1H]) and preclinically using fluorine 19 MRI. Translocator protein PET and 1H MR spectroscopy have been demonstrated to complement imaging metrics from structural (gadolinium-enhanced) MRI in nine and six trials for MS disease-modifying therapies, respectively. Still, despite multiple demonstrations of the utility of molecular imaging probes to evaluate the target location and to elucidate the mechanisms of disease-modifying therapies for MS applications, their use has been sparse in both preclinical and clinical settings.
Collapse
Affiliation(s)
- Aline M Thomas
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, and the Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, the Johns Hopkins University School of Medicine, 733 N Broadway, Room 659, Baltimore, MD 21205 (A.M.T., J.W.M.B.); and Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands (F.B.)
| | - Frederik Barkhof
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, and the Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, the Johns Hopkins University School of Medicine, 733 N Broadway, Room 659, Baltimore, MD 21205 (A.M.T., J.W.M.B.); and Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands (F.B.)
| | - Jeff W M Bulte
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, and the Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, the Johns Hopkins University School of Medicine, 733 N Broadway, Room 659, Baltimore, MD 21205 (A.M.T., J.W.M.B.); and Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands (F.B.)
| |
Collapse
|
3
|
Kulpanovich A, Tal A. What is the optimal schedule for multiparametric MRS? A magnetic resonance fingerprinting perspective. NMR IN BIOMEDICINE 2021; 34:e4196. [PMID: 31814197 PMCID: PMC9244865 DOI: 10.1002/nbm.4196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 05/09/2023]
Abstract
Clinical magnetic resonance spectroscopy (MRS) mainly concerns itself with the quantification of metabolite concentrations. Metabolite relaxation values, which reflect the microscopic state of specific cellular and sub-cellular environments, could potentially hold additional valuable information, but are rarely acquired within clinical scan times. By varying the flip angle, repetition time and echo time in a preset way (termed a schedule), and matching the resulting signals to a pre-generated dictionary - an approach dubbed magnetic resonance fingerprinting - it is possible to encode the spins' relaxation times into the acquired signal, simultaneously quantifying multiple tissue parameters for each metabolite. Herein, we optimized the schedule to minimize the averaged root mean square error (RMSE) across all estimated parameters: concentrations, longitudinal and transverse relaxation time, and transmitter inhomogeneity. The optimal schedules were validated in phantoms and, subsequently, in a cohort of healthy volunteers, in a 4.5 mL parietal white matter single voxel and an acquisition time under 5 minutes. The average intra-subject, inter-scan coefficients of variation (CVs) for metabolite concentrations, T1 and T2 relaxation times were found to be 3.4%, 4.6% and 4.7% in-vivo, respectively, averaged over all major singlets. Coupled metabolites were quantified using the short echo time schedule entries and spectral fitting, and reliable estimates of glutamate+glutamine, glutathione and myo-inositol were obtained.
Collapse
Affiliation(s)
- Alexey Kulpanovich
- Department of Chemical Physics, Weizmann Institute of Science, 234 Herzel St., Rehovot 7610001, Israel
| | - Assaf Tal
- Department of Chemical Physics, Weizmann Institute of Science, 234 Herzel St., Rehovot 7610001, Israel
| |
Collapse
|
4
|
Kirov II, Tal A. Potential clinical impact of multiparametric quantitative MR spectroscopy in neurological disorders: A review and analysis. Magn Reson Med 2020; 83:22-44. [PMID: 31393032 PMCID: PMC6814297 DOI: 10.1002/mrm.27912] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/06/2019] [Accepted: 06/29/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Unlike conventional MR spectroscopy (MRS), which only measures metabolite concentrations, multiparametric MRS also quantifies their longitudinal (T1 ) and transverse (T2 ) relaxation times, as well as the radiofrequency transmitter inhomogeneity (B1+ ). To test whether knowledge of these additional parameters can improve the clinical utility of brain MRS, we compare the conventional and multiparametric approaches in terms of expected classification accuracy in differentiating controls from patients with neurological disorders. THEORY AND METHODS A literature review was conducted to compile metabolic concentrations and relaxation times in a wide range of neuropathologies and regions of interest. Simulations were performed to construct receiver operating characteristic curves and compute the associated areas (area under the curve) to examine the sensitivity and specificity of MRS for detecting each pathology in each region. Classification accuracy was assessed using metabolite concentrations corrected using population-averages for T1 , T2 , and B1+ (conventional MRS); using metabolite concentrations corrected using per-subject values (multiparametric MRS); and using an optimal linear multiparametric estimator comprised of the metabolites' concentrations and relaxation constants (multiparametric MRS). Additional simulations were conducted to find the minimal intra-subject precision needed for each parameter. RESULTS Compared with conventional MRS, multiparametric approaches yielded area under the curve improvements for almost all neuropathologies and regions of interest. The median area under the curve increased by 0.14 over the entire dataset, and by 0.24 over the 10 instances with the largest individual increases. CONCLUSIONS Multiparametric MRS can substantially improve the clinical utility of MRS in diagnosing and assessing brain pathology, motivating the design and use of novel multiparametric sequences.
Collapse
Affiliation(s)
- Ivan I. Kirov
- Center for Advanced Imaging Innovation and Research (CAIR), Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, Department of Radiology, 660 1 Avenue, New York, NY 10016, United States of America
| | - Assaf Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 234 Herzel St., Rehovot 7610001, Israel
| |
Collapse
|
5
|
Rocca MA, Preziosa P, Filippi M. Application of advanced MRI techniques to monitor pharmacologic and rehabilitative treatment in multiple sclerosis: current status and future perspectives. Expert Rev Neurother 2018; 19:835-866. [PMID: 30500303 DOI: 10.1080/14737175.2019.1555038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Advances in magnetic resonance imaging (MRI) technology and analyses are improving our understanding of the pathophysiology of multiple sclerosis (MS). Due to their ability to grade the presence of irreversible tissue loss, microstructural tissue abnormalities, metabolic changes and functional plasticity, the application of these techniques is also expanding our knowledge on the efficacy and mechanisms of action of different pharmacological and rehabilitative treatments. Areas covered: This review discusses recent findings derived from the application of advanced MRI techniques to evaluate the structural and functional substrates underlying the effects of pharmacologic and rehabilitative treatments in patients with MS. Current applications as outcome in clinical trials and observational studies, their interpretation and possible pitfalls in their use are discussed. Finally, how these techniques could evolve in the future to improve monitoring of disease progression and treatment response is examined. Expert commentary: The number of treatments currently available for MS is increasing. The application of advanced MRI techniques is providing reliable and specific measures to better understand the targets of different treatments, including neuroprotection, tissue repair, and brain plasticity. This is a fundamental progress to move toward personalized medicine and individual treatment selection.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| |
Collapse
|
6
|
Yetkin MF, Mirza M, Dönmez H. Monitoring interferon β treatment response with magnetic resonance spectroscopy in relapsing remitting multiple sclerosis. Medicine (Baltimore) 2016; 95:e4782. [PMID: 27603381 PMCID: PMC5023904 DOI: 10.1097/md.0000000000004782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The aim of this study is to compare the white matter of multiple sclerosis (MS) patients with healthy controls and to monitor the response to the treatment with magnetic resonance spectroscopy (MRS).Fifteen healthy controls and 36 recently diagnosed MS patients never treated with interferon β were included in this study. In the patient group, MRS was performed before treatment, at 6th and 12th month after the initiation of treatment and once in control group. Patient group was divided into 3 interferon groups randomly. Physical examination findings were recorded as Expanded Disability Status Scale scores before treatment, at 6th and 12th month of interferon treatment.At the end of 1 year follow up, 26 of 36 patients completed the study. In patients' white matter lesions, N-acetylaspartate/creatine (NAA/Cr) ratios were lower than control group's white matters. NAA/Cr ratios were higher in control group's white matter than patient's normal appearing white matter but this difference was not statistically significant. There was no difference in choline/creatine (Cho/Cr) ratios between 2 groups. In follow-up period, NAA/Cr and Cho/Cr ratios obtained from patients' white matter lesions and normal appearing white matter did not change statistically.This study showed that in MS patients' white matters, especially in white matter lesions, neuron viability is reduced compared with healthy controls' normal white matter; and in the patients treated with interferon β NAA/Cr ratios remained stable. These stable levels of metabolite ratios in the patients who received interferon β therapy can be explained with either the shortness of the follow-up period post-treatment or may reflect a positive effect of the beta interferon therapy on the progress of MS.
Collapse
Affiliation(s)
- Mehmet Fatih Yetkin
- Department of Neurology, Faculty of Medicine, Erciyes University
- Correspondence: Mehmet Fatih Yetkin, Department of Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey (e-mail: )
| | - Meral Mirza
- Department of Neurology, Faculty of Medicine, Erciyes University
| | - Halil Dönmez
- Department of Radiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
7
|
Gallinat J, McMahon K, Kühn S, Schubert F, Schaefer M. Cross-sectional Study of Glutamate in the Anterior Cingulate and Hippocampus in Schizophrenia. Schizophr Bull 2016; 42:425-33. [PMID: 26333842 PMCID: PMC4753596 DOI: 10.1093/schbul/sbv124] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND There has been growing support for dysfunctions of the excitatory glutamatergic system and its implications for the psychophysiology of schizophrenia. However, previous studies reported mixed results regarding glutamate concentrations in schizophrenia with varying deviations across brain regions. METHODS We used an optimized proton magnetic resonance spectroscopy procedure to measure absolute glutamate concentrations in the left hippocampal region and the anterior cingulate cortex (ACC) in 29 medicated patients with schizophrenia and in 29 control participants without mental disorder. RESULTS The glutamate concentrations were significantly lower in the ACC but higher in the hippocampus of patients compared to controls. ACC and hippocampal glutamate concentrations correlated positively in patients but not in controls. ACC glutamate was weakly associated with Clinical Global Impression score and duration of illness in patients. CONCLUSION Glutamate concentrations in schizophrenia deviate from controls and show associations with disease severity. A higher concentration of hippocampal glutamate in schizophrenia compared to controls is shown. The association between ACC and hippocampus glutamate concentrations in patients with schizophrenia suggests an abnormal coupling of excitatory systems compared to controls as predicted by previous glutamate models of schizophrenia.
Collapse
Affiliation(s)
- Jürgen Gallinat
- Clinic for Psychiatry and Psychotherapy, Charité University Medicine, St. Hedwig-Krankenhaus, Berlin, Germany;
| | - Kibby McMahon
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Department of Psychology and Neuroscience, Duke University, Durham, NC
| | - Simone Kühn
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | | | - Martin Schaefer
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Department of Psychiatry, Psychotherapy, Psychosomatics and Addiction Medicine, Essen, Germany
| |
Collapse
|
8
|
Recreational alcohol use induces changes in the concentrations of choline-containing compounds and total creatine in the brain: a 1H MRS study of healthy subjects. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2015; 28:503-10. [DOI: 10.1007/s10334-015-0486-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 04/24/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
|
9
|
Rovira A, Auger C, Alonso J. Magnetic resonance monitoring of lesion evolution in multiple sclerosis. Ther Adv Neurol Disord 2013; 6:298-310. [PMID: 23997815 DOI: 10.1177/1756285613484079] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Disease activity in multiple sclerosis (MS) is strongly linked to the formation of new lesions, which involves a complex sequence of inflammatory, degenerative, and reparative processes. Conventional magnetic resonance imaging (MRI) techniques, such as T2-weighted and gadolinium-enhanced T1-weighted sequences, are highly sensitive in demonstrating the spatial and temporal dissemination of demyelinating plaques in the brain and spinal cord. Hence, these techniques can provide quantitative assessment of disease activity in patients with MS, and they are commonly used in monitoring treatment efficacy in clinical trials and in individual cases. However, the correlation between conventional MRI measures of disease activity and the clinical manifestations of the disease, particularly irreversible disability, is weak. This has been explained by a process of exhaustion of both structural and functional redundancies that increasingly prevents repair and recovery, and by the fact that these imaging techniques do not suffice to explain the entire spectrum of the disease process and lesion development. Nonconventional MRI techniques, such as magnetization transfer imaging, diffusion-weighted imaging, and proton magnetic resonance spectroscopy, which can selectively measure the more destructive aspects of MS pathology and monitor the reparative mechanisms of this disease, are increasingly being used for serial analysis of new lesion formation and provide a better approximation of the pathological substrate of MS plaques. These nonconventional MRI-based measures better assess the serial changes in newly forming lesions and improve our understanding of the relationship between the damaging and reparative mechanisms that occur in MS.
Collapse
Affiliation(s)
- Alex Rovira
- Magnetic Resonance Unit (IDI), Department of Radiology, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | | | | |
Collapse
|
10
|
Abstract
INTRODUCTION Magnetic resonance spectroscopy (MRS) will continue to play an ever increasing role in drug discovery because MRS does readily define biomarkers for several hundreds of clinically distinct diseases. Published evidence based medicine (EBM) surveys, which generally conclude the opposite, are seriously flawed and do a disservice to the field of drug discovery. AREAS COVERED This article presents MRS and how it has guided several hundreds of practical human 'drug discovery' endeavors since its development. Specifically, the author looks at the process of 'reverse-translation' and its influence in the expansion of the number of preclinical drug discoveries from in vivo MRS. The author also provides a structured approach of eight criteria, including EBM acceptance, which could potentially re-open the field of MRS for productive exploration of existing and repurposed drugs and cost-effective drug-discovery. EXPERT OPINION MRS-guided drug discovery is poised for future expansion. The cost of clinical trials has escalated and the use of biomarkers has become increasingly useful in improving patient selection for drug trials. Clinical MRS has uncovered a treasure-trove of novel biomarkers and clinical MRS itself has become better standardized and more widely available on 'routine' clinical MRI scanners. When combined with available new MRI sequences, MRS can provide a 'one stop shop' with multiple potential outcome measures for the disease and the drug in question.
Collapse
Affiliation(s)
- Brian D Ross
- Huntington Medical Research Institutes, Magnetic Resonance Spectroscopy Unit, 10 Pico Street, Pasadena 91105, USA.
| |
Collapse
|
11
|
Rovira A, Alonso J. 1H magnetic resonance spectroscopy in multiple sclerosis and related disorders. Neuroimaging Clin N Am 2013; 23:459-74. [PMID: 23928200 DOI: 10.1016/j.nic.2013.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proton magnetic resonance spectroscopy ((1)H-MRS) is an unconventional technique that allows noninvasive characterization of metabolic abnormalities in the central nervous system. (1)H-MRS provides important insights into the chemical-pathologic changes that occur in patients with multiple sclerosis (MS). In this review article we present the main brain and spinal cord (1)H-MRS features in MS, their diagnostic value in differentiating pseudotumoral demyelinating lesions from primary brain tumors, and their relationship with clinical variables. Last, some data related to the use of (1)H-MRS in therapeutic trials is presented.
Collapse
Affiliation(s)
- Alex Rovira
- Department of Radiology, Magnetic Resonance Unit (IDI), Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Barcelona 08035, Spain.
| | | |
Collapse
|
12
|
Correlation of diffusion and metabolic alterations in different clinical forms of multiple sclerosis. PLoS One 2012; 7:e32525. [PMID: 22479330 PMCID: PMC3316537 DOI: 10.1371/journal.pone.0032525] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 01/29/2012] [Indexed: 12/13/2022] Open
Abstract
Diffusion tensor imaging (DTI) and MR spectroscopic imaging (MRSI) provide greater sensitivity than conventional MRI to detect diffuse alterations in normal appearing white matter (NAWM) of Multiple Sclerosis (MS) patients with different clinical forms. Therefore, the goal of this study is to combine DTI and MRSI measurements to analyze the relation between diffusion and metabolic markers, T2-weighted lesion load (T2-LL) and the patients clinical status. The sensitivity and specificity of both methods were then compared in terms of MS clinical forms differentiation. MR examination was performed on 71 MS patients (27 relapsing remitting (RR), 26 secondary progressive (SP) and 18 primary progressive (PP)) and 24 control subjects. DTI and MRSI measurements were obtained from two identical regions of interest selected in left and right centrum semioval (CSO) WM. DTI metrics and metabolic contents were significantly altered in MS patients with the exception of N-acetyl-aspartate (NAA) and NAA/Choline (Cho) ratio in RR patients. Significant correlations were observed between diffusion and metabolic measures to various degrees in every MS patients group. Most DTI metrics were significantly correlated with the T2-LL while only NAA/Cr ratio was correlated in RR patients. A comparison analysis of MR methods efficiency demonstrated a better sensitivity/specificity of DTI over MRSI. Nevertheless, NAA/Cr ratio could distinguish all MS and SP patients groups from controls, while NAA/Cho ratio differentiated PP patients from controls. This study demonstrated that diffusivity changes related to microstructural alterations were correlated with metabolic changes and provided a better sensitivity to detect early changes, particularly in RR patients who are more subject to inflammatory processes. In contrast, the better specificity of metabolic ratios to detect axonal damage and demyelination may provide a better index for identification of PP patients.
Collapse
|
13
|
Bagory M, Durand-Dubief F, Ibarrola D, Comte JC, Cotton F, Confavreux C, Sappey-Marinier D. Implementation of an absolute brain 1H-MRS quantification method to assess different tissue alterations in multiple sclerosis. IEEE Trans Biomed Eng 2011; 59:2687-94. [PMID: 21768043 DOI: 10.1109/tbme.2011.2161609] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Magnetic resonance spectroscopy has emerged as a sensitive modality to detect early and diffuse alterations in multiple sclerosis. Recently, the hypothesis of neurodegenerative pathogenesis has highlightened the interest for measurement of metabolites concentrations, to gain specificity, in a large brain volume encompassing different tissue alterations. Therefore, we proposed in this paper the implementation of an absolute quantification method based on localized spectroscopy at short (30 ms) and long (135 ms) echo time of a volume including normal appearing white matter, cortical gray matter, and lesions. First, methodological developments were implemented including external calibration, and corrections of phased-array coil sensitivity and cerebrospinal fluid volume contribution. Second, these improvements were validated and optimized using an original methodology based on simulations of brain images with lesions. Finally, metabolic alterations were assessed in 65 patients including 26 relapsing-remitting, 17 primary-progressive (PP), 22 secondary-progressive (SP) patients, and in 23 normal subjects. Results showed increases of choline, creatine, and myo-inositol concentrations in PP and SP patients compared to controls, whereas the concentration of N-acetyl compounds remained constant. The major finding of this study was the identification of Cho concentration and Cho/tNA ratio as putative markers of progressive onset, suggesting interesting perspectives in detection and followup of neurodegenerative processes.
Collapse
|
14
|
Pfueller CF, Brandt AU, Schubert F, Bock M, Walaszek B, Waiczies H, Schwenteck T, Dörr J, Bellmann-Strobl J, Mohr C, Weinges-Evers N, Ittermann B, Wuerfel JT, Paul F. Metabolic changes in the visual cortex are linked to retinal nerve fiber layer thinning in multiple sclerosis. PLoS One 2011; 6:e18019. [PMID: 21494672 PMCID: PMC3071815 DOI: 10.1371/journal.pone.0018019] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 02/22/2011] [Indexed: 12/03/2022] Open
Abstract
Objective To investigate the damage to the retinal nerve fiber layer as part of the anterior visual pathway as well as an impairment of the neuronal and axonal integrity in the visual cortex as part of the posterior visual pathway with complementary neuroimaging techniques, and to correlate our results to patients' clinical symptoms concerning the visual pathway. Design, Subjects and Methods Survey of 86 patients with relapsing-remitting multiple sclerosis that were subjected to retinal nerve fiber layer thickness (RNFLT) measurement by optical coherence tomography, to a routine MRI scan including the calculation of the brain parenchymal fraction (BPF), and to magnetic resonance spectroscopy at 3 tesla, quantifying N-acetyl aspartate (NAA) concentrations in the visual cortex and normal-appearing white matter. Results RNFLT correlated significantly with BPF and visual cortex NAA, but not with normal-appearing white matter NAA. This was connected with the patients' history of a previous optic neuritis. In a combined model, both BPF and visual cortex NAA were independently associated with RNFLT. Conclusions Our data suggest the existence of functional pathway-specific damage patterns exceeding global neurodegeneration. They suggest a strong interrelationship between damage to the anterior and the posterior visual pathway.
Collapse
Affiliation(s)
- Caspar F Pfueller
- NeuroCure Clinical Research Center, Charité Universitaetsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kunz N, Cudalbu C, Mlynarik V, Hüppi PS, Sizonenko SV, Gruetter R. Diffusion-weighted spectroscopy: A novel approach to determine macromolecule resonances in short-echo time 1H-MRS. Magn Reson Med 2010; 64:939-46. [DOI: 10.1002/mrm.22490] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
MR spectroscopic evaluation of N-acetylaspartate's T2 relaxation time and concentration corroborates white matter abnormalities in schizophrenia. Neuroimage 2009; 48:525-31. [PMID: 19573608 DOI: 10.1016/j.neuroimage.2009.06.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 06/18/2009] [Accepted: 06/22/2009] [Indexed: 11/20/2022] Open
|
17
|
Abstract
Proton magnetic resonance spectroscopy ((1)H-MRS) provides tissue metabolic information in vivo. This article reviews the role of MRS-determined metabolic alterations in lesions, normal-appearing white matter, gray matter, and spinal cord in advancing our knowledge of pathologic changes in multiple sclerosis (MS). In addition, the role of MRS in objectively evaluating therapeutic efficacy is reviewed. This potential metabolic information makes MRS a unique tool to follow MS disease evolution, understand its pathogenesis, evaluate the disease severity, establish a prognosis, and objectively evaluate the efficacy of therapeutic interventions.
Collapse
Affiliation(s)
- Balasrinivasa R. Sajja
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE 68198-1045, (402) 559-3861, (402) 559-4829 (fax), (email)
| | - Jerry S. Wolinsky
- Department of Neurology, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, (713) 500-7048, (713) 500-7041 (fax), (email)
| | - Ponnada A. Narayana
- Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, (713) 500-7677, (713) 500-7684 (fax), (email)
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW The aim of this article is to review the latest clinical trials in neurological diseases where magnetic resonance imaging was used to assess treatment outcome. RECENT FINDINGS The unique sensitivity of magnetic resonance imaging for detecting disorders in the brain has made it an attractive noninvasive tool for assessing treatment efficacy in several diseases. Volumetric and functional magnetic resonance imaging have proved to represent robust biomarkers for the evaluation of anti-Alzheimer treatments, and have demonstrated a significant impact of cholinesterase inhibitors. The optimization of thrombolytic therapy in acute ischemic stroke has concentrated on the quantification of the ischemic penumbra, using perfusion-weighted and diffusion-weighted imaging. Standard assessment of T2 or fluid-attenuated inversion recovery lesion load remains the method of choice to evaluate new therapeutic strategy in multiple sclerosis. Other nonconventional quantitative magnetic resonance imaging techniques such as magnetic resonance volumetry, magnetization transfer imaging, diffusion-weighted imaging, or magnetic resonance spectroscopy are increasingly used in the field. SUMMARY Magnetic resonance imaging has become a major surrogate marker of treatment response in clinical trials of neurological disorders, offering the possibility to reduce the required sample size or to shorten the duration of the trial.
Collapse
Affiliation(s)
- Carolina Ciumas
- CTRS-INSERM IDEE (Institut Des Epilepsies de l'Enfant et de l'adolescent), INSERM U821, CERMEP imagerie du vivant, and Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and Université Claude Bernard Lyon 1, Lyon, France
| | | | | |
Collapse
|
19
|
(1)H MR spectroscopy of inflammation, infection and ischemia of the brain. Eur J Radiol 2008; 67:250-257. [PMID: 18407447 DOI: 10.1016/j.ejrad.2008.02.033] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 02/27/2008] [Indexed: 11/21/2022]
Abstract
Different pathologic patterns in multiple sclerosis (MS) are reflected by alterations of metabolites in (1)H MR spectroscopy of the brain. Elevated choline (Cho), lactate (Lac), lipids and macromolecules are reliable markers for acute demyelination regardless of the clinical entity (also in acute disseminated encephalomyelitis). N-acetyl-aspartate (NAA) is a suitable marker for neuronal integrity. It is reduced in acute MS lesions and in normal appearing white matter, even distant to acute and chronic-lesions. Recovery from reduced NAA levels to subnormal values during remyelination, and varying time courses of NAA in normal appearing white matter during relapsing remitting disease indicate the value of this spectroscopic marker for monitoring activity and recovery. Inositol (Ins) is increased in chronic MS lesions being a marker for astrocytic gliosis. In viral disease, Cho and Ins are always increased, whereas a reduction of NAA mostly reflects an advanced or a detoriated clinical state. In bacterial brain abscesses, numerous amino acids, lipids and Lac can be elevated. In ischemia, especially the Lac/NAA in comparison with perfusion and diffusion weighted imaging seems to be a new measure for areas of metabolic need, and may help to better characterise the penumbra of the stroke and the final infarct size.
Collapse
|
20
|
Mostert JP, Blaauw Y, Koch MW, Kuiper AJ, Hoogduin JM, De Keyser J. Reproducibility over a 1-month period of 1H-MR spectroscopic imaging NAA/Cr ratios in clinically stable multiple sclerosis patients. Eur Radiol 2008; 18:1736-40. [PMID: 18389250 PMCID: PMC2469275 DOI: 10.1007/s00330-008-0925-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Accepted: 12/31/2007] [Indexed: 11/30/2022]
Abstract
N-acetylaspartate/creatine (NAA/Cr) ratios, assessed with proton magnetic resonance spectroscopy, are increasingly used as a surrogate marker for axonal dysfunction and degeneration in multiple sclerosis (MS). The purpose of this study was to test short-time reproducibility of NAA/Cr ratios in patients with clinically stable MS. In 35 MS patients we analysed NAA/Cr ratios obtained with 1H-MR spectroscopic imaging at the centrum semiovale either with lateral ventricles partially included (group 1; n=15) or more cranially with no ventricles included (group 2; n=20). To test short-term reproducibility of the NAA/Cr measurements, patients were scanned twice 4 weeks apart. We determined mean NAA/Cr and Cho/Cr ratios of 12 grey matter and 24 white matter voxels. Mean NAA/Cr ratios of both the white and grey matter did not change after 4 weeks. Overall 4-week reproducibility of the NAA/Cr ratio, expressed as coefficient of variation, was 4.8% for grey matter and 3.5% for white matter. Reproducibility of cranial scanning of the ventricles was slightly better than with cerebrospinal fluid included. Our study shows good short-term reproducibility of NAA/Cr ratio measurements in the centrum semiovale, which supports the reliability of this technique for longitudinal studies.
Collapse
Affiliation(s)
- J P Mostert
- Department of Neurology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
In the last decade, the use of magnetic resonance imaging (MRI) has led to a reevaluation of the pathogenesis and the natural history of multiple sclerosis (MS). This has been driven to a significant degree by results of proton magnetic resonance spectroscopy (1H-MRS) studies. By providing evidence of early neurodegeneration (based on levels of N-acetylaspartate), results of 1H-MRS studies have led to a reconsideration of the role of axonal damage in MS. By measuring brain changes of metabolites such as choline and myo-inosol, 1H-MRS has confirmed the importance of assessing myelin damage and repair. However, despite the pathological specificity of 1H-MRS and the relatively large number of clinical 1H-MRS studies on patients with MS, measures provided by this MR technique are not used routinely for assessing and monitoring MS patients. This is due to technical difficulties and limitations that are at present not entirely solved. We will review here the most relevant results in MS studies that have used 1H-MRS measures, the clinical importance of these results and the pending issues that need to be solved for a larger and more reliable use of 1H-MRS in clinical MS studies.
Collapse
Affiliation(s)
- Nicola De Stefano
- Department of Neurological and Behavioural Sciences, University of Siena, Italy.
| | | |
Collapse
|
22
|
Vrenken H, Geurts JJG. Gray and normal-appearing white matter in multiple sclerosis: an MRI perspective. Expert Rev Neurother 2007; 7:271-9. [PMID: 17341175 DOI: 10.1586/14737175.7.3.271] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Besides focal white matter lesions, multiple sclerosis brain tissue also displays abnormalities in the gray matter and the normal-appearing white matter. Recent advances in magnetic resonance imaging studies of both types of tissue are discussed. Herein, normal-appearing white matter abnormalities are being found in quantitative magnetic resonance investigations, consistent with a limited degree of axonal damage and/or demyelination, and an increase of glial cells, but the specific nature of the histopathological changes underlying the quantitative magnetic resonance abnormalities remains unclear. Gray matter studies have demonstrated that much of the disease process remains undetected by conventional magnetic resonance imaging. Although newly developed techniques, such as 3D double-inversion recovery, may greatly improve detection of cortical pathology, it remains important to investigate the resultant effects on the cortical tissue alongside this, by studying integrity of normal-appearing cortical tissue through quantitative magnetic resonance studies, as well as the net neurodegenerative effect through measurements of cortical thickness and cortical atrophy (rates). To improve our understanding of normal-appearing white and gray matter changes, their mutual relations, and their relations to clinical changes, further in vivo magnetic resonance imaging studies are required. Specifically, it is proposed that more spatially specific investigations, ideally utilizing subject-specific anatomical information from, for example, diffusion fiber-tracking techniques, could be used to gain more insight into the relations between normal-appearing white matter changes, cortical changes, magnetic resonance visible focal-lesions, and physical and cognitive deficits.
Collapse
Affiliation(s)
- Hugo Vrenken
- MS Center Amsterdam, VU University Medical Center, Department of Physics & Medical Technology, De Boelelaan, Amsterdam, The Netherlands.
| | | |
Collapse
|
23
|
Gonzalez-Toledo E, Kelley RE, Minagar A. Role of magnetic resonance spectroscopy in diagnosis and management of multiple sclerosis. Neurol Res 2006; 28:280-3. [PMID: 16687054 DOI: 10.1179/016164106x98161] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Application of magnetic resonance spectroscopy (MRS) to study the nature, pathogenesis, tissue injury and therapeutic response of MS patients has altered our view of multiple sclerosis (MS) fundamentally. By offering biochemical analysis of demyelinating lesions and axonal injury, MRS generates objective and quantifiable data on central nervous system tissue and metabolism during pathogenesis of MS. Of these biochemical markers, N-acetylaspartate, which serves as an indicator of neuronal and axonal injury and choline (Cho) peaks which demonstrate cell membrane metabolism, provide a plethora of data on the neuropathology of MS. Based on these findings, MRS provides neuroscientists with a unique diagnostic and prognostic tool to follow MS patients and assess their response to treatment with immunomodulators. MRS findings are so significant that consideration should be given to their routine inclusion as secondary outcome measures in clinical trials of MS patients.
Collapse
|
24
|
Filippi M, Rocca MA, Arnold DL, Bakshi R, Barkhof F, De Stefano N, Fazekas F, Frohman E, Wolinsky JS. EFNS guidelines on the use of neuroimaging in the management of multiple sclerosis. Eur J Neurol 2006; 13:313-25. [PMID: 16643308 DOI: 10.1111/j.1468-1331.2006.01543.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Magnetic resonance (MR)-based techniques are widely used for the assessment of patients with suspected and definite multiple sclerosis (MS). However, despite the publication of several position papers, which attempted to define the utility of MR techniques in the management of MS, their application in everyday clinical practice is still suboptimal. This is probably related, not only, to the fact that the majority of published guidelines focused on the optimization of MR technology in clinical trials, but also to the continuing development of modern, quantitative MR-based techniques, that have not as yet entered the clinical arena. The present report summarizes the conclusions of the 'EFNS Expert Panel of Neuroimaging of MS' on the application of conventional and non-conventional MR techniques to the clinical management of patients with MS. These guidelines are intended to assist in the use of conventional MRI for the diagnosis and longitudinal monitoring of patients with MS. In addition, they should provide a foundation for the development of more widespread but rational clinical applications of non-conventional MR-based techniques in studies of MS patients.
Collapse
Affiliation(s)
- M Filippi
- Neuroimaging Research Unit, Department of Neurology Scientific Institute and University Ospedale San Raffaele, Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Inglese M, Grossman RI, Filippi M. Magnetic resonance imaging monitoring of multiple sclerosis lesion evolution. J Neuroimaging 2006; 15:22S-29S. [PMID: 16385016 DOI: 10.1177/1051228405282243] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The characteristic feature of multiple sclerosis (MS) pathology is the demyelinated plaque distributed throughout the central nervous system. Although MS is a primary demyelinating disease, acute axonal injury is common in actively demyelinating MS lesions and it is considered one of the major determinants of neurological deficit. Magnetic resonance imaging (MRI) has had a dramatic impact on MS in both the clinical practice and basic science settings. Techniques such as T2-weighted and gadolinium-enhanced T1-weighted MRI are very sensitive in detecting lesions and, thus, increase the level of certainty of MS diagnosis. Conventional MRI has also improved our understanding of the pathogenesis of the disease and has provided objective and reliable measures to monitor the effect of experimental treatments in clinical trials. However, conventional MRI does not provide specific information on the heterogeneous pathologic substrate of MS lesions. Advanced MRI techniques, such as magnetization transfer imaging, diffusion tensor imaging, and proton MR spectroscopy, offer the unprecedented ability to observe and quantify pathological changes in lesions and normal-appearing brain tissue over time. The present review will discuss the major contributions of conventional MRI and quantitative MRI techniques to understand how individual MS lesions evolve.
Collapse
Affiliation(s)
- Matilde Inglese
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
26
|
Caramanos Z, Narayanan S, Arnold DL. 1H-MRS quantification of tNA and tCr in patients with multiple sclerosis: a meta-analytic review. Brain 2005; 128:2483-506. [PMID: 16230321 DOI: 10.1093/brain/awh640] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Meta-analysis was performed on the results of 75 comparisons from the 30 peer-reviewed publications that used proton magnetic resonance spectroscopy (1H-MRS) or spectroscopic imaging to (i) quantify the mean concentrations of total creatine (tCr, found in neurons, astrocytes and oligodendrocytes), and/or total N-acetyl groups (tNA, found only in neurons), in the lesional and/or non-lesional white matter (WM) and/or the grey matter (GM) of patients with multiple sclerosis (MS) and (ii) compare these values with those in the homologous tissues of normal controls (NC). For mean [tNA] values, there was (i) a large-effect-sized overall decrease in patients' lesional WM relative to NC WM (25 comparisons), (ii) a medium-effect-sized overall decrease in patients' non-lesional WM relative to NC WM (36 comparisons) and (iii) a medium-effect-sized overall decrease in patients' GM relative to NC GM (14 comparisons). Patients' mean [tNA] values were sometimes statistically normal but were never statistically increased. For mean [tCr] values, there was (i) no statistically significant overall change in the patients' lesional WM relative to NC WM (24 comparisons), although statistically significant increases and decreases were sometimes found, (ii) a medium-effect-sized overall increase in patients' non-lesional WM relative to NC WM (33 comparisons) and (iii) no statistically significant overall change in patients' GM relative to NC GM (12 comparisons), although a significant decrease was found in one comparison. Of 41 comparisons with statistically significant changes, 38 combined in a way that would probably result in decreased mean [tNA]/[tCr] ratios such that (i) 66% had statistically decreased mean [tNA] and statistically unchanged mean [tCr] values, (ii) 13% had statistically decreased mean [tNA] and statistically increased mean [tCr] values and (iii) 21% had statistically unchanged mean [tNA] values and statistically increased mean [tCr] values. Of the 25 comparisons that came from studies that also analysed [tNA]/[tCr] ratios, the direction of change in mean [tNA] values and mean [tNA]/[tCr] ratios was concordant in 84%. In comparisons that quantified both [tNA] and [tCr], there was a similar amount of variability in both measures in each of the different tissue types studied, both in patients and NCs. Together, these results suggest that within-voxel tNA/tCr ratios can be interpreted as valid and accurate surrogate measures of 'cerebral tissue integrity'-with decreased tNA/tCr ratios indicating some combination of neuroaxonal disturbance, oligodendroglial disturbance, and astrocytic proliferation. These results also suggest that, although within-voxel tNA/tCr ratios are not perfect indicators of [tNA] content, they do represent a practical compromise to acquiring surrogate measures of within-voxel neuroaxonal integrity.
Collapse
Affiliation(s)
- Zografos Caramanos
- Magnetic Resonance Spectroscopy Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
27
|
Li CW, Kuo YC, Chen CY, Kuo YT, Chiu YY, She FO, Liu GC. Quantification of choline compounds in human hepatic tumors by proton MR spectroscopy at 3 T. Magn Reson Med 2005; 53:770-6. [PMID: 15799049 DOI: 10.1002/mrm.20412] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The quantification of choline-containing compounds (Cho) in hepatic tumors by (1)H MR spectroscopy (MRS) is of great interest because such compounds have been linked to malignancy. In this study, a practical external phantom replacement method for the absolute quantification of hepatic metabolites is demonstrated. We performed experiments at 3 T using a body coil, and used an external phantom containing choline chloride for calibration. We first tested the quantification strategy to confirm its suitability in vivo using a phantom of known concentration and normal brain tissue. The results obtained after coil loading and T(1) and T(2) effects were corrected for were consistent with the known concentration and previously published values. To demonstrate its feasibility, we applied the technique to liver studies conducted on five normal volunteers and four patients with hepatocellular carcinoma, and one patient (also in the latter group) who had undergone post-transcatheter arterial chemoembolization (TACE). The Cho concentrations in the four patients were estimated to be 3.4, 6.3, 7.4, and 14.0 mM, respectively. These values are substantially higher than those obtained from the healthy volunteers (1.3 +/- 0.9 mM (mean +/- SD)). The results indicate that the proposed method is accurate and requires fewer tedious procedures for MRS; therefore, it may be a promising technique for evaluating response to treatment in liver cancer.
Collapse
Affiliation(s)
- Chun-Wei Li
- Faculty of Medical Radiation Technology, College of Health Sciences, 100 Shi-Chuan 1st Road, San Ming District, Kaohsiung City, Taiwan
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW The availability of partially effective immunomodulatory and immunosuppressive treatments for relapsing multiple sclerosis (MS) opens important ethical, methodological and practical issues in the design and conduct of new clinical trials in these patients. RECENT FINDINGS The recommendation of the National Health Authorities to prioritize phase III clinical trials using placebo arm raises ethical questions. In addition, patients are reluctant to be involved in such trials. Alternative clinical trial designs will be discussed. Relapses and active lesions are accepted measures of disease activity; new/enlarging T2 lesions and/or enhancing lesions are accepted surrogate markers of disease activity in phase II clinical trials. On the contrary, there are no accepted magnetic resonance imaging (MRI) surrogate markers of disease progression and also the clinical measures to monitor the degenerative aspects of the disease are not without important limitations. New scales of impairment, disability and quality of life will be reviewed extensively. We will also focus on the value of modern and quantitative MRI techniques, which hold substantial promise as tools to estimate the extent of MS-related irreversible tissue loss. SUMMARY The use of an active comparator in a superior clinical-trial design is becoming an attractive option for testing the efficacy of new drugs in relapsing MS. At present there are no fully reliable and sensitive clinical markers of the accumulation of irreversible tissue damage in MS. Although additional extensive application in longitudinal studies is needed, modern MRI techniques are promising tools to monitor the neurodegenerative aspects of MS.
Collapse
Affiliation(s)
- Giancarlo Comi
- Department of Neurology and Clinical Neurophysiology, Milan, Italy.
| | | |
Collapse
|
29
|
Vrenken H, Barkhof F, Uitdehaag BMJ, Castelijns JA, Polman CH, Pouwels PJW. MR spectroscopic evidence for glial increase but not for neuro-axonal damage in MS normal-appearing white matter. Magn Reson Med 2005; 53:256-66. [PMID: 15678547 DOI: 10.1002/mrm.20366] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Quantitative single-voxel, short echo-time (TE) MR spectroscopy (MRS) was used to determine metabolite concentrations in the cerebral normal-appearing white matter (NAWM) of 76 patients with multiple sclerosis (MS), and the WM of 25 controls. In NAWM of all MS disease types (primary progressive, relapsing-remitting, and secondary progressive), the concentration ratio of total N-acetyl-aspartate (tNAA)/total creatine (tCr) was decreased compared to controls. Remarkably, this was entirely due to an increase of tCr in MS patients, whereas there was no difference in tNAA. Separate quantification of the two tNAA components yielded no significant difference in NAA (N-acetyl-aspartate), while the concentration of NAAG (N-acetyl-aspartyl-glutamate) was slightly-but significantly-elevated in MS patients. Myo-inositol (Ins) was strongly increased in MS patients, and choline-containing compounds (Cho) were mildly increased. There were no metabolite differences between disease types, and no correlations with disability scores. The results are supported by measures of spectral quality, which were identical for patients and controls. In conclusion, MS NAWM containing very little perilesional tissue is characterized by increased glial cell numbers (increase of Ins and tCr) without evidence of axonal dysfunction (normal NAA). Further studies should elucidate the mechanism underlying increased NAAG in MS NAWM.
Collapse
Affiliation(s)
- H Vrenken
- Department of Radiology, MR Center for MS Research, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Magnetic resonance imaging (MRI) plays an ever-expanding role in the evaluation of multiple sclerosis (MS). This includes its sensitivity for the diagnosis of the disease and its role in identifying patients at high risk for conversion to MS after a first presentation with selected clinically isolated syndromes. In addition, MRI is a key tool in providing primary therapeutic outcome measures for phase I/II trials and secondary outcome measures in phase III trials. The utility of MRI stems from its sensitivity to longitudinal changes including those in overt lesions and, with advanced MRI techniques, in areas affected by diffuse occult disease (the so-called normal-appearing brain tissue). However, all current MRI methodology suffers from limited specificity for the underlying histopathology. Conventional MRI techniques, including lesion detection and measurement of atrophy from T1- or T2-weighted images, have been the mainstay for monitoring disease activity in clinical trials, in which the use of gadolinium with T1-weighted images adds additional sensitivity and specificity for areas of acute inflammation. Advanced imaging methods including magnetization transfer, fluid attenuated inversion recovery, diffusion, magnetic resonance spectroscopy, functional MRI, and nuclear imaging techniques have added to our understanding of the pathogenesis of MS and may provide methods to monitor therapies more sensitively in the future. However, these advanced methods are limited by their cost, availability, complexity, and lack of validation. In this article, we review the role of conventional and advanced imaging techniques with an emphasis on neurotherapeutics.
Collapse
Affiliation(s)
- Rohit Bakshi
- Department of Neurology and Radiology, Partners MS Center, Center for Neurological Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
31
|
Ratiney H, Sdika M, Coenradie Y, Cavassila S, van Ormondt D, Graveron-Demilly D. Time-domain semi-parametric estimation based on a metabolite basis set. NMR IN BIOMEDICINE 2005; 18:1-13. [PMID: 15660450 DOI: 10.1002/nbm.895] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A novel and fast time-domain quantitation algorithm--quantitation based on semi-parametric quantum estimation (QUEST)--invoking optimal prior knowledge is proposed and tested. This nonlinear least-squares algorithm fits a time-domain model function, made up from a basis set of quantum-mechanically simulated whole-metabolite signals, to low-SNR in vivo data. A basis set of in vitro measured signals can be used too. The simulated basis set was created with the software package NMR-SCOPE which can invoke various experimental protocols. Quantitation of 1H short echo-time signals is often hampered by a background signal originating mainly from macromolecules and lipids. Here, we propose and compare three novel semi-parametric approaches to handle such signals in terms of bias-variance trade-off. The performances of our methods are evaluated through extensive Monte-Carlo studies. Uncertainty caused by the background is accounted for in the Cramér-Rao lower bounds calculation. Valuable insight about quantitation precision is obtained from the correlation matrices. Quantitation with QUEST of 1H in vitro data, 1H in vivo short echo-time and 31P human brain signals at 1.5 T, as well as 1H spectroscopic imaging data of human brain at 1.5 T, is demonstrated.
Collapse
Affiliation(s)
- H Ratiney
- Laboratoire de RMN, CNRS UMR 5012, Université Claude Bernard Lyon I-CPE, Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
32
|
Elster C, Schubert F, Link A, Walzel M, Seifert F, Rinneberg H. Quantitative magnetic resonance spectroscopy: Semi-parametric modeling and determination of uncertainties. Magn Reson Med 2005; 53:1288-96. [PMID: 15906296 DOI: 10.1002/mrm.20500] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A semi-parametric approach for the quantitative analysis of magnetic resonance (MR) spectra is proposed and an uncertainty analysis is given. Single resonances are described by parametric models or by parametrized in vitro spectra and the baseline is determined nonparametrically by regularization. By viewing baseline estimation in a reproducing kernel Hilbert space, an explicit parametric solution for the baseline is derived. A Bayesian point of view is adopted to derive uncertainties, and the many parameters associated with the baseline solution are treated as nuisance parameters. The derived uncertainties formally reduce to Cramér-Rao lower bounds for the parametric part of the model in the case of a vanishing baseline. The proposed uncertainty calculation was applied to simulated and measured MR spectra and the results were compared to Cramér-Rao lower bounds derived after the nonparametrically estimated baselines were subtracted from the spectra. In particular, for high SNR and strong baseline contributions the proposed procedure yields a more appropriate characterization of the accuracy of parameter estimates than Crémer-Rao lower bounds, which tend to overestimate accuracy.
Collapse
Affiliation(s)
- Clemens Elster
- Physikalisch-Technische Bundesanstalt, 105857 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
In addition to providing information on tissue structure, magnetic resonance (MR) technology offers the potential to investigate tissue metabolism and function. MR spectroscopy (MRS) offers a wealth of data on the biochemistry of a selected brain tissue volume, which represent potential surrogate markers for the pathology underlying multiple sclerosis (MS). In particular, the N-acetylaspartate peak in an MR spectrum is a putative marker of neuronal and axonal integrity, and the choline peak appears to reflect cell-membrane metabolism. On this basis, a diminished N-acetylaspartate peak is interpreted to represent neuronal/axonal dysfunction or loss, and an elevated choline peak represents heightened cell-membrane turnover, as seen in demyelination, remyelination, inflammation, or gliosis. Therefore, MRS may provide a unique tool to evaluate the severity of MS, establish a prognosis, follow disease evolution, understand its pathogenesis, and evaluate the efficacy of therapeutic interventions, which complements the information obtained from the various forms of assessment made by conventional MR imaging.
Collapse
Affiliation(s)
- Ponnada A Narayana
- Department of Interventional Imaging, University of Texas Medical School at Houston, TX 77030, USA.
| |
Collapse
|
34
|
Gabis LV, Panasci DJ, Andriola MR, Huang W. Acute disseminated encephalomyelitis: an MRI/MRS longitudinal study. Pediatr Neurol 2004; 30:324-9. [PMID: 15165634 DOI: 10.1016/j.pediatrneurol.2003.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Accepted: 11/13/2003] [Indexed: 11/28/2022]
Abstract
A clinical and radiologic diagnosis of acute disseminated encephalomyelitis was made in two children: a 6-month-old female who presented with focal seizures and thalamic and cerebral white matter lesions, and a 4.5-year-old male who presented with tremor and dystonia and had bilateral basal ganglia lesions, without evidence of active brain infection. Serial clinical and laboratory evaluations were supplemented by neuroimaging including routine magnetic resonance imaging and (1)H magnetic resonance spectroscopy. They were treated symptomatically, without using steroids or intravenous immunoglobulin, and both children recovered. Single voxel (1)H magnetic resonance spectroscopy data were acquired from the involved areas and from normal-appearing white matter. Abnormalities in N-acetyl-aspartate, choline, and lactate peaks were evident during the symptomatic phase, and persistence of low N-acetyl-aspartate was observed during recovery. These spectroscopic findings are consistent with neuropathologic findings of neuronal dysfunction, cellular membrane turnover, cellular infiltration, and metabolic stress in the acute phase, and with neuronal loss in the chronic phase.
Collapse
|
35
|
Geurts JJG, Barkhof F, Castelijns JA, Uitdehaag BMJ, Polman CH, Pouwels PJW. Quantitative1H-MRS of healthy human cortex, hippocampus, and thalamus: Metabolite concentrations, quantification precision, and reproducibility. J Magn Reson Imaging 2004; 20:366-71. [PMID: 15332241 DOI: 10.1002/jmri.20138] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To evaluate metabolite concentrations in cortical gray matter, hippocampus, and thalamus of healthy adults, and to investigate precision and reproducibility of quantitative proton magnetic resonance spectroscopy (1H-MRS) in these gray matter regions. MATERIALS AND METHODS Quantitative single-voxel short echo-time spectra were obtained from healthy human cortex, hippocampus, and thalamus. Subjects were examined twice. Metabolite concentrations, quantification precision, and reproducibility were determined. RESULTS There were no significant differences between test and retest measurements. Regional differences were observed with respect to metabolite concentrations, quantification precision, and reproducibility. Quantification precision and reproducibility of N-acetylaspartate and N-acetyl aspartylglutamate (tNAA), creatine and phosphocreatine (tCr), choline-containing compounds (Cho), and myo-inositol (myo-Ins), were better than those of glutamate (Glu) and glutamine (Gln). Generally, precision and reproducibility were better in cortex than in hippocampus or thalamus. The quantification precision was shown to correlate both with reproducibility and spectral linewidth. CONCLUSION The reliability of quantitative MRS depends on the metabolite concerned, its concentration, and on the brain area studied. Moreover, the quantification precision of a metabolite in a single spectrum appears to be a reliable measure for its reproducibility in a longitudinal study.
Collapse
Affiliation(s)
- Jeroen J G Geurts
- Department of Radiology, MR Center for MS Research, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
Filippi M, Rocca MA, Comi G. The use of quantitative magnetic-resonance-based techniques to monitor the evolution of multiple sclerosis. Lancet Neurol 2003; 2:337-46. [PMID: 12849150 DOI: 10.1016/s1474-4422(03)00408-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conventional MRI can improve accuracy in the diagnosis of multiple sclerosis (MS) and monitor the efficacy of experimental treatments. However, conventional MRI provides only gross estimates of the extent and nature of tissue damage associated with this disease. Other quantitative magnetic-resonance-based techniques have the potential to overcome the limitations of conventional MRI and, as a consequence, to improve our understanding of the natural history of MS. Magnetisation-transfer, diffusion-weighted, and functional MRI--as well as proton magnetic-resonance spectroscopy--are helping us to elucidate the mechanisms that underlie injury, repair, and functional adaptation in patients with MS. These techniques are substantially changing our understanding of how MS causes irreversible disability and should be used more extensively in clinical trials and in studies of disease progression.
Collapse
Affiliation(s)
- Massimo Filippi
- Department of Neurology, Scientific Institute and University Ospedale San Raffaele, Milan, Italy.
| | | | | |
Collapse
|
37
|
John Wiley & Sons, Ltd.. Current awareness in NMR in biomedicine. NMR IN BIOMEDICINE 2003; 16:56-65. [PMID: 12619641 DOI: 10.1002/nbm.799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|