1
|
Pelletier F, Durand E, Chaiyut J, Bronstein C, Pessemesse L, Vaysse L, Liengprayoon S, Gaillet S, Brioche T, Bertrand-Gaday C, Coudray C, Sultan A, Feillet-Coudray C, Casas F. Furan fatty acid extracted from Hevea brasiliensis latex increases muscle mass in mice. Biomed Pharmacother 2023; 166:115330. [PMID: 37595430 DOI: 10.1016/j.biopha.2023.115330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023] Open
Abstract
Skeletal muscle is essential for locomotion and plays a crucial role in energy homeostasis. It is regulated by nutrition, genetic factors, physical activity and hormones. Furan fatty acids (FuFAs) are minor fatty acids present in small quantities in food from plants and animals origin. Recently, we showed that a preventive nutritional supplementation with furan fatty acid in a DIO mouse model reduces metabolic disorders. The present study was designed to determine the influence of FuFA-F2 extracted from Hevea brasiliensis latex on skeletal muscle phenotype. In C2C12 myotubes we found that FuFA-F2 whatever the concentration used increased protein content. We revealed that in C2C12 myotubes FuFA-F2 (10 µM) increases protein synthesis as shown by the stimulation of mTOR phosphorylation. Next, to confirm in vivo our results C57Bl6 mice were supplemented by oral gavage with vehicle or FuFA-F2 (20 mg/kg) for 3 and a half weeks. We found that mice supplemented with FuFA-F2 had a greater lean mass than the control mice. In line with this observation, we revealed that FuFA-F2 increased muscle mass and promoted more oxidative muscle metabolism in mice as attested by cytochrome c oxidase activity. In conclusion, we demonstrated that FuFA-F2 stimulates muscle anabolism in mice in vitro and in vivo, mimicking in part physical activity. This study highlights that in vivo FuFA-F2 may have health benefits by increasing muscle mass and oxidative metabolism.
Collapse
Affiliation(s)
| | - Erwann Durand
- CIRAD, UMR Qualisud, 34398 Montpellier, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Jatuporn Chaiyut
- Kasetsart Agricultural and Agro-industrial Product Improvement Institute, Kasetsart University, Bangkok, Thaïland
| | | | | | - Laurent Vaysse
- CIRAD, UPR BioWooEB, 34398 Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Siriluck Liengprayoon
- Kasetsart Agricultural and Agro-industrial Product Improvement Institute, Kasetsart University, Bangkok, Thaïland
| | | | | | | | | | - Ariane Sultan
- Département d'Endocrinologie, Diabète, Nutrition Inserm 1411, CHU de Montpellier, Univ Montpellier, Montpellier, France
| | | | | |
Collapse
|
2
|
Dore L, Durand E, Bonafos B, Chaiyut J, Vaysse L, Liengprayoon S, Gaillet S, Pessemesse L, Lambert K, Bertrand-Gaday C, Coudray C, Sultan A, Casas F, Feillet-Coudray C. Preventive nutritional supplementation with furan fatty acid in a DIO mouse model increases muscle mass and reduces metabolic disorders. Biomed Pharmacother 2023; 164:114945. [PMID: 37263166 DOI: 10.1016/j.biopha.2023.114945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
The increase in obesity has become a major global health problem and is associated with numerous metabolic dysfunctions. Furan fatty acids (FuFAs) are minor lipids present in our diet. Recently we showed that FuFA-F2 extracted from Hevea brasiliensis latex stimulates muscle anabolism in mice in vitro and in vivo, mimicking in part physical activity. While skeletal muscle is essential for energy metabolism and is the predominant site of insulin-mediated glucose uptake in the post prandial state, our results suggested that FuFA-F2 could have favorable effects against obesity. The aim of this work was therefore to study whether a preventive nutritional supplementation with FuFA-F2 (40 mg or 110 mg/day/kg of body weight) in a diet-induced obesity (DIO) mouse model may have beneficial effects against obesity and liver and skeletal muscle metabolic dysfunction. We showed that 12 weeks of FuFA-F2 supplementation in DIO mice decreased fat mass, increased lean mass and restored normal energy expenditure. In addition, we found that FuFA-F2 improved insulin sensitivity. We revealed that FuFA-F2 increased muscle mass but had no effect on mitochondrial function and oxidative stress in skeletal muscle. Furthermore, we observed that FuFA-F2 supplementation reduced liver steatosis without impact on mitochondrial function and oxidative stress in liver. Our findings demonstrated for the first time that a preventive nutritional supplementation with a furan fatty acid in DIO mice reduced metabolic disorders and was able to mimic partly the positive effects of physical activity. This study highlights that nutritional FuFA-F2 supplementation could be an effective approach to treat obesity and metabolic syndrome.
Collapse
Affiliation(s)
| | - Erwann Durand
- CIRAD, UMR Qualisud, 34398 Montpellier, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | | | - Jatuporn Chaiyut
- Kasetsart agricultural and agro-industrial product improvement institute, Kasetsart University, Bangkok, Thailand
| | - Laurent Vaysse
- CIRAD, UPR BioWooEB, 34398 Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Siriluck Liengprayoon
- Kasetsart agricultural and agro-industrial product improvement institute, Kasetsart University, Bangkok, Thailand
| | | | | | | | | | | | - Ariane Sultan
- Service Diabète-Nutrition, Université Montpellier, PHYMEDEXP, Montpellier, France
| | | | | |
Collapse
|
3
|
Targeted quantitation of furan fatty acids in edible oils by gas chromatography/triple quadrupole tandem mass spectrometry (GC-TQ/MS). Food Chem 2023; 404:134521. [DOI: 10.1016/j.foodchem.2022.134521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
|
4
|
Alvarado K, Durand E, Vaysse L, Liengprayoon S, Gaillet S, Coudray C, Casas F, Feillet-Coudray C. Effets bénéfiques potentiels des acides gras furaniques, des lipides alimentaires bioactifs. CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2021. [DOI: 10.1016/j.cnd.2021.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Xu L, Sinclair AJ, Faiza M, Li D, Han X, Yin H, Wang Y. Furan fatty acids - Beneficial or harmful to health? Prog Lipid Res 2017; 68:119-137. [PMID: 29051014 DOI: 10.1016/j.plipres.2017.10.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022]
Abstract
Furan fatty acids are found in plants, algae, and fish, and reported to have some positive health benefits, including anti-oxidant and anti-inflammatory activities, and inhibition of non-enzymatic lipid peroxidation. A major metabolite of furan fatty acids, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), has been reported to be increased in patients who progress from prediabetes to type 2 diabetes, although CMPF is not necessarily associated with impaired glucose metabolism. Other studies report that CMPF levels are lower in subjects with diabetes than control subjects. Plasma CMPF levels increase in subjects who consume fish or fish oil, and in patients with renal failure. It is not known where furan fatty acids are converted to CMPF and it is speculated that this might be a result of microbiome activity. The plasma levels reported for CMPF in healthy, diabetic and patients with renal disease vary by factors of more than 100-fold within each of these three groups, so measurement error appears to be limiting the ability to interpret studies. This review explores these controversies and raises questions about whether CMPF is a marker for healthy diets or indeed associated with diabetes and renal health. The review concludes that, on balance, furan fatty acids are beneficial for health.
Collapse
Affiliation(s)
- Long Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Research Center of Lipid Science and Applied Engineering Technology, South China University of Technology, Guangzhou 510640, China
| | - Andrew J Sinclair
- School of Medicine, Deakin University, Locked Bag, 20000, Geelong, VIC, Australia
| | - Muniba Faiza
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Research Center of Lipid Science and Applied Engineering Technology, South China University of Technology, Guangzhou 510640, China
| | - Daoming Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Research Center of Lipid Science and Applied Engineering Technology, South China University of Technology, Guangzhou 510640, China
| | - Xianlin Han
- Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonia, TX 78284, USA; Department of Medicine, University of Texas Health Science Center at San Antonia, TX 78284, USA
| | - Huiyong Yin
- Key Laboratory of Food Safety Research, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China 200031
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Research Center of Lipid Science and Applied Engineering Technology, South China University of Technology, Guangzhou 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China.
| |
Collapse
|
6
|
Sano T, Okabe R, Iwahashi M, Imagi J, Sato T, Yamashita T, Fukusaki E, Bamba T. Effect of Furan Fatty Acids and 3-Methyl-2,4-nonanedione on Light-Induced Off-Odor in Soybean Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2136-2140. [PMID: 28215079 DOI: 10.1021/acs.jafc.6b05056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Soybean oil is one of the most widely consumed vegetable oils. However, under photooxidative conditions, this oil develops a beany and green off-odor through a mechanism that has not yet been elucidated. Upon photooxidation, 3-methyl-2,4-nonanedione (3-MND) produces a strong aroma. In this study, the effect of furan fatty acids and 3-MND on odor reversion in soybean oil was investigated. Our findings suggest that the observed light-induced off-odor was likely attributable to the furan fatty acids present in the oil through the generation of 3-MND. While 3-MND may not be directly responsible for the development of light-induced off-odor, this compound appears to be involved because off-odor was detected in canola oil samples containing added 3-MND. In addition, in the present work, 3-hydroxy-3-methyl-2,4-nonanedione, which is derived from 3-MND, was identified for the first time in light-exposed soybean oil and shown to be one of the compounds responsible for odor reversion.
Collapse
Affiliation(s)
- Takashi Sano
- J-Oil Mills, Incorporated , 7-41 Daikoku-cho, Tsurumi-ku, Yokohama 230-0053, Japan
| | - Ryo Okabe
- J-Oil Mills, Incorporated , 7-41 Daikoku-cho, Tsurumi-ku, Yokohama 230-0053, Japan
| | - Maiko Iwahashi
- J-Oil Mills, Incorporated , 7-41 Daikoku-cho, Tsurumi-ku, Yokohama 230-0053, Japan
| | - Jun Imagi
- J-Oil Mills, Incorporated , 7-41 Daikoku-cho, Tsurumi-ku, Yokohama 230-0053, Japan
| | - Toshiro Sato
- J-Oil Mills, Incorporated , 7-41 Daikoku-cho, Tsurumi-ku, Yokohama 230-0053, Japan
| | - Toshiyuki Yamashita
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University , 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Biotechnology, Graduate School of Engineering, Osaka University , 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Wendlinger C, Hammann S, Vetter W. Detailed Study of Furan Fatty Acids in Total Lipids and the Cholesteryl Ester Fraction of Fish Liver. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0211-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
|
9
|
|
10
|
|
11
|
Spiteller G. Furan fatty acids: occurrence, synthesis, and reactions. Are furan fatty acids responsible for the cardioprotective effects of a fish diet? Lipids 2006; 40:755-71. [PMID: 16296395 DOI: 10.1007/s11745-005-1438-5] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Furan FA (F-acids) are tri- or tetrasubstituted furan derivatives characterized by either a propyl or pentyl side chain in one of the alpha-positions; the other is substituted by a straight long-chain saturated acid with a carboxylic group at its end. F-acids are generated in large amounts in algae, but they are also produced by plants and microorganisms. Fish and other marine organisms as well as mammals consume F-acids in their food and incorporate them into phospholipids and cholesterol esters. F-acids are catabolized to dibasic urofuran acids, which are excreted in the urine. The biogenetic precursor of the most abundant F-acid, F6, is linoleic acid. Methyl groups in the beta-position are derived from adenosylmethionine. Owing to the different alkyl substituents, synthesis of F-acids requires multistep reactions. F-acids react readily with peroxyl radicals to generate dioxoenes. The radical-scavenging ability of F-acids may contribute to the protective properties of fish and fish oil diets against mortality from heart disease.
Collapse
Affiliation(s)
- Gerhard Spiteller
- Lehrstuhl für Organische Chemie I, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
12
|
Spiteller G. The relation of lipid peroxidation processes with atherogenesis: A new theory on atherogenesis. Mol Nutr Food Res 2005; 49:999-1013. [PMID: 16270286 DOI: 10.1002/mnfr.200500055] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The extremely high sensitivity of polyunsaturated fatty acids (PUFAs) to oxygen is apparently used by nature to induce stepwise appropriate cell responses. It is hypothesized that any alteration in the cell membrane structure induces influx of Ca2+ ions. Ca2+ ions are required to activate degrading enzymes, such as phospholipases and lipoxygenases (LOX) that transform PUFAs bound to membrane phospholipids to lipidhydroperoxides (LOOHs). Enzymatic reduction products of LOOHs seem to serve as ligands of proteins, which induce gene activation to initiate a physiological response. Increasing external impact on cells is connected with deactivation of LOX, liberation of the iron ion in its active center followed by cleavage of LOOH molecules to LO * radicals. LO * radicals induce a second set of responses leading to generation of unsaturated aldehydic phospholipids and unsaturated epoxyhydroxy acids that contribute to induction of apoptosis. Finally peroxyl radicals are generated by attack of LO * radicals on phospholipids. The latter attack nearly all types of cell constituents: Amino- and hydroxyl groups are oxidized to carbonyl functions, sugars and proteins are cleaved, molecules containing double bonds such as unsaturated fatty acids or cholesterol suffer epoxidation. LOOH molecules and iron ions at the cell wall of an injured cell are in tight contact with phospholipids of neighboring cells and transfer to these reactive radicals. Thus, the damaging processes proceed and cause finally necrosis except the chain reaction is stopped by scavengers, such as glutathione. Consequently, PUFAs incorporated into phospholipids of the cell wall are apparently equally important for the fate of a single organism as the DNA in the nucleus for conservation of the species. This review intends to demonstrate the connection of cell alteration reactions with induction of lipid peroxidation (LPO) processes and their relation to inflammatory diseases, especially atherosclerosis and a possible involvement of food. Previously it was deduced that food rich in cholesterol and saturated fatty acids is atherogenic, while food rich in n-3 PUFAs was recognized to be protective against vascular diseases. These deductions are in contradiction to the fact that saturated fatty acids withstand oxidation while n-3 PUFAs are subjected to LPO like all other PUFAs. Considering the influence of minor food constituents a new theory about atherogenesis and the influence of n-3 PUFAs is represented that might resolve the contradictory results of feeding experiments and chemical experiences. Cholesterol-PUFA esters are minor constituents of mammalian derived food, but main components of low density lipoprotein (LDL). The PUFA part of these esters occasionally suffers oxidation by heating or storage of mammalian derived food. There are indications that these oxidized cholesterol esters are directly incorporated into lipoproteins and transferred via the LDL into endothelial cells where they induce damage and start the sequence of events outlined above. The deduction that consumption of n-3 PUFAs protects against vascular diseases is based on the observation that people living on a fish diet have a low incidence to be affected by vascular diseases. Fish are rich in n-3 PUFAs; thus, it was deduced that the protective properties of a fish diet are due to n-3 PUFAs. Fish, fish oils, and vegetables contain besides n-3 PUFAs as minor constituents furan fatty acids (F-acids). These are radical scavengers and are incorporated after consumption of these nutrients into human phospholipids, leading to the assumption that not n-3 PUFAs, but F-acids are responsible for the beneficial efficiency of a fish diet.
Collapse
Affiliation(s)
- Gerhard Spiteller
- Department of Organic Chemistry, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
13
|
Biosynthesis of tetrahydrofuranyl fatty acids from linoleic acid by clavibacter
sp. ALA2. J AM OIL CHEM SOC 2003. [DOI: 10.1007/s11746-003-0667-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Tanaka T, Ikebuchi H, Sawada J, Tanaka Y. Production of antiserum for sensitive enzyme-linked immunosorbent assay of 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid by chemiluminescence. Lipids 1998; 33:733-6. [PMID: 9688178 DOI: 10.1007/s11745-998-0264-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To obtain a specific antiserum for use in enzyme-linked immunosorbent assay (ELISA) of 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), we prepared a hapten-carrier conjugate in which the CMPF hapten was linked to a carrier protein through the 5-(1-hydrazopropyl) group. The antisera raised against this antigen in guinea pigs had excellent specificity for CMPF, showing little cross-reactivity with closely related compounds and no significant cross-reactivities with other furan compounds. The results indicated that a specific antiserum to CMPF could be produced by an antigen whose CMPF moiety is linked to a carrier protein through a position remote from the inherent functional groups. A standard curve of CMPF by ELISA using a chemiluminescence system showed a high sensitivity and a linearity in the range of 5-100 ng/mL.
Collapse
Affiliation(s)
- T Tanaka
- Division of Biochemistry and Immunochemistry, National Institute of Health Sciences, Tokyo, Japan.
| | | | | | | |
Collapse
|
15
|
Dembitsky VM, Rezanka T. Furan fatty acids of some brackish invertebrates from the Caspian sea. Comp Biochem Physiol B Biochem Mol Biol 1996. [DOI: 10.1016/0305-0491(96)00063-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Wahl HG, Chrzanowski A, Mu¨ller C, Liebich HM, Hoffmann A. Identification of furan fatty acids in human blood cells and plasma by multi-dimensional gas chromatography-mass spectrometry. J Chromatogr A 1995. [DOI: 10.1016/0021-9673(94)01083-q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Lie Ken Jie MS, Syed-Rahmatullah MS. Chemical and enzymatic preparation of acylglycerols containing C18 furanoid fatty acids. Lipids 1995; 30:79-84. [PMID: 7760692 DOI: 10.1007/bf02537045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
C18 furanoid triacylglycerol [glycerol tri-(9,12-epoxy-9,11-octadecadienoate)] was prepared by chemical transformation of triricinolein isolated from castor oil. The procedure involved oxidation, epoxidation and cyclization of the epoxy-keto intermediate with sodium azide and ammonium chloride in aqueous ethanol. The furanoid triacylglycerol was also obtained by esterification of C18 furanoid fatty acid with glycerol using Novozyme 435 (Novo Nordisk A.S., Bagsvaerd, Denmark) as biocatalyst. When Lipozyme (Novo Nordisk A.S.) was used, a mixture of the furanoid 1(3)-rac-monoacylglycerol and 1,3-diacylglycerol was obtained. In order to obtain the C18 furanoid 1,2(2,3)-diacylglycerol, selective hydrolysis of the furanoid triacylglycerol was achieved using porcine pancreatic lipase in tris(hydroxymethyl) methylamine buffer. Interesterification of triolein with methyl C18 furanoid ester in the presence of Lipozyme showed maximum incorporation of 34% of furanoid fatty acid. Extension of the interesterification to vegetable oils (olive, peanut, sunflower, corn and palm oil) allowed a maximum of 24% furanoid acid incorporation to be achieved.
Collapse
|
18
|
Batna A, Spiteller G. Effects of soybean lipoxygenase-1 on phosphatidylcholines containing furan fatty acids. Lipids 1994; 29:397-403. [PMID: 8090060 DOI: 10.1007/bf02537308] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Naturally occurring tetraalkylsubstituted furan fatty acids (F-acids) were tested as potential substrates for soybean lipoxygenase-1. For this purpose, F-acid methyl ester and phosphatidylcholines containing F-acids at the sn-2 position of the glycerol residue were incubated with the enzyme. Oxidation of F-acids only occurs in the presence of linoleic acid as co-substrate. Linoleic acid is converted by lipoxygenase to the corresponding hydroperoxide that oxidizes the F-acid, probably in a radical reaction, to form an unstable dioxoene compound. This intermediate then forms, dependent on pH, unsaturated furanoid acids or isomers with cyclopentenolone structure that can be detected by gas chromatography/mass spectrometry (GC/MS). F-acids located at the sn-2 position of a synthetic phosphatidylcholine (PC), containing linoleic acid in the sn-1 position, are co-oxidized to a greater extent by incubation with soybean lipoxygenase-1 than are F-acids bound to PC with myristic acid in the sn-1 position when subjected to the enzyme in the presence of a great excess of linoleic acid. The results suggest that F-acids may play a strategic role in antioxidative processes in plant cells.
Collapse
Affiliation(s)
- A Batna
- Lehrstuhl für Organische Chemie I, Universität Bayreuth, Germany
| | | |
Collapse
|
19
|
Wahl HG, Liebich HM, Hoffmann A. Identification of fatty acid methyl esters as minor components of fish oil by multidimensional GC-MSD: New furan fatty acids. ACTA ACUST UNITED AC 1994. [DOI: 10.1002/jhrc.1240170505] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Lie Ken Jie MSF, Wong KP. Synthesis of phenyl substituted C18 furanoid fatty esters. Lipids 1993; 28:43-6. [DOI: 10.1007/bf02536358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/1991] [Accepted: 11/06/1992] [Indexed: 10/23/2022]
|
21
|
Antioxidant effect of naturally occurring furan fatty acids on oxidation of linoleic acid in aqueous dispersion. J AM OIL CHEM SOC 1990. [DOI: 10.1007/bf02540506] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Abstract
Methyl-branched fatty acids, which are usually minor components (equal or less than 0.1%) in fish oils, were concentrated in the non-urea-complexing fraction along with polyunsaturated fatty acids during the enrichment of omega-3 fatty acids from certain fish oils via the urea complexation process. The methyl-branched fatty acids in the omega-3 polyunsaturated fatty acid concentrates, which were prepared from three fish body oils, were characterized by gas chromatography and gas chromatography/mass spectrometry. Among the major branched-chain fatty acids expected and identified were the known isoprenoid acids--mainly 4,8,12-trimethyltridecanoic, pristanic, and phytanic--and the well-known iso and anteiso structures. Two novel phytol-derived multimethyl-branched fatty acids, 2,2,6,10,14-pentamethylpentadecanoic and 2,3,7,11,15-pentamethylhexadecanoic, were identified in redfish (Sebastes sp.) oil. These two fatty acids were absent in oils from menhaden (Brevoortia tyrannus) and Pacific salmon (mixed, but mostly from sockeye, Oncorhynchus nerka). The major branched-chain fatty acid in the salmon oil, 7-methyl-7-hexadecenoic acid, was also present to a moderate extent in menhaden oil. A novel vicinal dimethyl-branched fatty acid, 7,8-dimethyl-7-hexadecenoic was detected in all of the fish oils examined, but was most important in the salmon oil. Three monomethyl-branched fatty acids, 11-methyltetradecanoic acid, and 11- and 13-methylhexadecanoic, hitherto undescribed in fish lipids, were also detected in salmon, redfish and menhaden oils.
Collapse
Affiliation(s)
- W M Ratnayake
- Technical University of Nova Scotia, Halifax, Canada B3J 2X4
| | | | | |
Collapse
|
23
|
Gorst-Allman CP, Puchta V, Spiteller G. Investigations of the origin of the furan fatty acids (F-acids). Lipids 1988; 23:1032-6. [PMID: 3237002 DOI: 10.1007/bf02535648] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The possible role of linoleic acid as a biogenetic precursor of the furan fatty acids (F-acids) was investigated in in vivo experiments in the rat, using a C19 analogue of linoleic acid and gas chromatography-mass spectrometry. No evidence of incorporation of this compound into the F-acids was found. Using an improved analysis procedure by converting F-acids into their tetrahydrofuran derivatives (enabling a separation from the large amounts of normal fatty acids), F-acids (F3, F4 and F6) were detected in rat food, correcting earlier results. Quantification of F-acid intake with food and excretion of furandicarboxylic acids in the urine, suggested the possibility that the F-acids are not produced de novo in the rat, but instead accumulate in tissue after nutritional intake.
Collapse
Affiliation(s)
- C P Gorst-Allman
- National Chemical Research Laboratory, Council for Scientific and Industrial Research, Pretoria, Republic of South Africa
| | | | | |
Collapse
|
24
|
The composition of furan fatty acids in the crayfish. Lipids 1988; 23:694-700. [DOI: 10.1007/bf02535671] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1987] [Accepted: 04/01/1988] [Indexed: 11/26/2022]
|
25
|
Dietel P, Spiteller G. Inkubation von 2,5-disubstituierten F-Säuren mit Rinderleberhomogenisat. ACTA ACUST UNITED AC 1988. [DOI: 10.1002/jlac.198819880505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Puchta V, Spiteller G, Weidinger H. F-Säuren: Eine bisher unbekannte Komponente der Phospholipide des Humanblutes. ACTA ACUST UNITED AC 1988. [DOI: 10.1002/jlac.198819880106] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Schödel R, Spiteller G. Über das Vorkommen von F-Säuren in Rinderleber und deren enzymatischen Abbau bei Gewebeverletzung. ACTA ACUST UNITED AC 1987. [DOI: 10.1002/jlac.198719870354] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Rahn CH, Sand DM, Krick TP, Glass RL, Schlenk H. Syntheses of radioactive furan fatty acids. Lipids 1981. [DOI: 10.1007/bf02534963] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
|
30
|
Lie Ken Jie MSF. Fatty acids: XX1. location of the position of the furan ring in 2,5-disubstituted furan- containing fatty acids by GLC analysis of oxidation products. J AM OIL CHEM SOC 1980. [DOI: 10.1007/bf02668256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
|
32
|
Glass RL, Krick TP, Olson DL, Thorson RL. The occurrence and distribution of furan fatty acids in spawning male freshwater fish. Lipids 1977; 12:828-36. [PMID: 916825 DOI: 10.1007/bf02533272] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Furan fatty acids (F acids) have been found in the livers and/or testes of 20 species, representing 9 families, of male freshwater fish. In 9 species they are major components of the lipids while in the remaining 11 species they occur to a much lesser extent. The F acids in some species reach a maximum concentation in the testes lipids, and minimum liver lipid concentration, at spawning. In all species in the testes, the F acids are confined almost exclusively to the triglyceride fraction while, in the liver lipids, they are found, in order of decreasing concentration, in the cholesteryl esters, the triglycerides, and the phospholipids. In the lipids of many individuals F6, 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic acid, is the major fatty acid present. It is presumed that these acids perform some as yet unidentified metabolic function. Isolation technology and identification of F acids by a specific thin layer chromatographic spray reagent are discussed.
Collapse
|