1
|
Lin J, Peng CX, Huang WM. Comparative efficacy of antifungal drugs for the treatment of oral candidiasis in HIV-positive patients: A Bayesian network meta-analysis. Med Clin (Barc) 2025; 164:76-83. [PMID: 39214731 DOI: 10.1016/j.medcli.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 09/04/2024]
Abstract
Oral candidiasis infection is particularly prevalent among individuals in HIV-positive patients. Antifungal drugs have shown promising therapeutic effects in treating oral candidiasis in HIV-positive patients. However, the selection of specific antifungal drugs for the treatment of oral candidiasis in HIV-positive patients lacks evidence-based guidelines. This study aims to address this gap by conducting a comprehensive review of relevant randomized controlled trials (RCTs) and performing a network meta-analysis to assess the efficacy of different antifungal drugs in treating oral candidiasis in HIV-positive patients. A systematic search was conducted in databases including EMBASE, Web of Science, Medline, and Cochrane databases to identify relevant articles. Additionally, key pertinent sources in the literatures were also reviewed. All studies published prior to August 2023 were eligible for inclusion. Two researchers independently conducted the screening of literature, extraction of data, and evaluation of quality. Pairwise and network meta-analysis were then performed to assess the primary outcomes of the randomized controlled trials (RCTs) included. The protocol was registered on the PROSPERO database (CRD42024513912). Twenty-six RCTs were included in this meta-analysis, involving a total of 3145 patients and evaluating seven interventions (placebo, fluconazole, itraconazole, nystatin, clotrimazole, ketoconazole, miconazole). Pairwise meta-analysis and network meta-analysis showed fluconazole was significantly efficacy in increasing mycological cure rates when compared with placebo, clotrimazole, and nystatin. Ketoconazole and miconazole were significantly efficacy in increasing mycological cure rates when compared with nystatin. Network meta-analysis also suggested the efficacy of the seven interventions in increasing mycological cure rates was ranked as follows: placebo (35.3%), fluconazole (95.2%), itraconazole (61.6%), nystatin (17.0%), clotrimazole (52.7%), ketoconazole (69.2%), miconazole (69.1%). The available evidence indicates that fluconazole had the greatest possibility to increase mycological cure rates in HIV-positive patients, while, nystatin was the least effective antifungal drug in increasing mycological cure rates in HIV-positive patients.
Collapse
Affiliation(s)
- Jiong Lin
- Department of Stomatology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen 518100, Shenzhen, China.
| | - Cai-Xia Peng
- Department of Stomatology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen 518100, Shenzhen, China
| | - Wei-Man Huang
- Department of Stomatology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen 518100, Shenzhen, China
| |
Collapse
|
2
|
Hu LP, Huang W, Wang X, Xu C, Qin WT, Li D, Tian G, Li Q, Zhou Y, Chen S, Nie HZ, Hao Y, Song J, Zhang XL, Sundquist J, Sundquist K, Li J, Jiang SH, Zhang ZG, Ji J. Terbinafine prevents colorectal cancer growth by inducing dNTP starvation and reducing immune suppression. Mol Ther 2022; 30:3284-3299. [PMID: 35765243 PMCID: PMC9552806 DOI: 10.1016/j.ymthe.2022.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 12/31/2022] Open
Abstract
Existing evidence indicates that gut fungal dysbiosis might play a key role in the pathogenesis of colorectal cancer (CRC). We sought to explore whether reversing the fungal dysbiosis by terbinafine, an approved antifungal drug, might inhibit the development of CRC. A population-based study from Sweden identified a total of 185 patients who received terbinafine after their CRC diagnosis and found that they had a decreased risk of death (hazard ratio = 0.50) and metastasis (hazard ratio = 0.44) compared with patients without terbinafine administration. In multiple mouse models of CRC, administration of terbinafine decreased the fungal load, the fungus-induced myeloid-derived suppressor cell (MDSC) expansion, and the tumor burden. Fecal microbiota transplantation from mice without terbinafine treatment reversed MDSC infiltration and partially restored tumor proliferation. Mechanistically, terbinafine directly impaired tumor cell proliferation by reducing the ratio of nicotinamide adenine dinucleotide phosphate (NADP+) to reduced form of nicotinamide adenine dinucleotide phosphate (NADPH), suppressing the activity of glucose-6-phosphate dehydrogenase (G6PD), resulting in nucleotide synthesis disruption, deoxyribonucleotide (dNTP) starvation, and cell-cycle arrest. Collectively, terbinafine can inhibit CRC by reversing fungal dysbiosis, suppressing tumor cell proliferation, inhibiting fungus-induced MDSC infiltration, and restoring antitumor immune response.
Collapse
Affiliation(s)
- Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wuqing Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, FuZhou 350108, China
| | - Xu Wang
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China
| | - Chunjie Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei-Ting Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongxue Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guangang Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaoqi Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Suyuan Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui-Zhen Nie
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yujun Hao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Song
- Department of Radiation Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xue-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jan Sundquist
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Malmö 20502, Sweden; Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristina Sundquist
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Malmö 20502, Sweden; Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jianguang Ji
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Malmö 20502, Sweden.
| |
Collapse
|
3
|
Hu S, Zhu F, Jiang W, Wang Y, Quan Y, Zhang G, Gu F, Yang Y. Retrospective Analysis of the Clinical Characteristics of Candida auris Infection Worldwide From 2009 to 2020. Front Microbiol 2021; 12:658329. [PMID: 34093471 PMCID: PMC8173142 DOI: 10.3389/fmicb.2021.658329] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/28/2021] [Indexed: 12/21/2022] Open
Abstract
Introduction Candida auris is an emerging multidrug-resistant fungus that may cause infections with a high mortality rate. The first case of C. auris infection was reported in 2009 and infections have been reported in 44 countries. The fungus now represents a major global public health threat. We analyzed cases from the emergence of C. auris infections up until the end of 2020. It is hoped that the results of this analysis will raise awareness in scientists to promote protection and control research pertaining to this pathogen. Methods PubMed and Web of Science databases were searched for all papers related to C. auris infections up until December 31, 2020. We sorted and organized these data into the following categories: date of publication, patient age and sex, underlying diseases, risk factors for infection, patient mortality information, drug sensitivity information of C. auris isolates, and genetic classification. The χ2 test was used to screen for factors that may affect patient mortality. Results A total of 912 patients were included in the analysis. There’s a higher proportion of men and a high proportion of patients were premature babies and elderly people. The proportions of patients with underlying diseases such as diabetes, kidney disease, trauma, and ear disease were also high. More than half of patients had a history of central venous catheter use and a history of broad-spectrum antibiotic use. The χ2 test revealed that only kidney disease (P < 0.05) was an important risk factor for mortality in C. auris-infected patients. Conclusions A comprehensive understanding of C. auris was achieved following this retrospective analysis, including the characteristics of C. auris-infected patients. In recent years, increasing numbers of multidrug-resistant C. auris isolates have been identified, and the high mortality rates associated with infection merit greater attention from the medical world.
Collapse
Affiliation(s)
- Shan Hu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, China.,Department of Laboratory Medicine, Xuzhou Tumor Hospital, Xuzhou, China
| | - Feilong Zhu
- The Affiliated Xuzhou Rehabilitation Hospital of Xuzhou Medical University, Xuzhou Rehabilitation Hospital, Xuzhou, China
| | - Weiwei Jiang
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yuehua Wang
- Department of Life Science, Hebei University, Baoding, China
| | - Yongqiang Quan
- Department of Nephrology, Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guoming Zhang
- Department of Laboratory Medicine, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, Shuyang, China
| | - Feng Gu
- Department of Laboratory Medicine, Xuzhou Tumor Hospital, Xuzhou, China
| | - Ying Yang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, China
| |
Collapse
|
4
|
Abstract
Anti-fungal agents are classified under two major headings, systematic and topical agents. Only systematic anti-fungal agents will be discussed in this chapter. Since the discovery in 1955, amphotericin B has been the cornerstone of anti-fungal treatment. It is active against most species of fungi. However, Candida lusitaniae, Pseudallescheria boydii, and fusarium spp have primary resistance to amphotericin B. Recently, new liposomal preparations of amphotericin B have been developed. They are less nephrotoxic. The azole family of anti-fungal includes two broad classes: the imidazoles (clotrimazote, ketoconazote, miconazole) and the triazoles (flucouazole and itracouazole). Imidazoles are still widely used for the treatment of superficial mycoses and vaginal candidiasis. The systematic triazoles are more slowly metabolized and have less effect on human synthesis than imidazoles, hence they are preferred for systemic therapy. Flucytosine is a fluorinated pyrimidine. Clinically, the principal use of flucytosine is as adjunctive therapy with amphotericin B in the treatment of candidial or cryptococcal diseases, Griseofuluin is derived from penicillium. It is fungistatic in vitro for species of dermatophytes. It is useful for the treatment of tinea capitis and tinea unginum.
Collapse
Affiliation(s)
- W Abuhammour
- Department of Pediatrics, Hurley Medical Centre, Michigan State University-College of Human Medicine, Flint, Michigan, USA.
| | | |
Collapse
|