1
|
Buo C, Bearss RJ, Novak AG, Anello AE, Dakin JJ, Piet R. Serotonin stimulates female preoptic area kisspeptin neurons via activation of type 2 serotonin receptors in mice. Front Endocrinol (Lausanne) 2023; 14:1212854. [PMID: 37900129 PMCID: PMC10602649 DOI: 10.3389/fendo.2023.1212854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023] Open
Abstract
Background The neuroendocrine control of ovulation is orchestrated by neuronal circuits that ultimately drive the release of gonadotropin-releasing hormone (GnRH) from the hypothalamus to trigger the preovulatory surge in luteinizing hormone (LH) secretion. While estrogen feedback signals are determinant in triggering activation of GnRH neurons, through stimulation of afferent kisspeptin neurons in the rostral periventricular area of the third ventricle (RP3VKISS1 neurons), many neuropeptidergic and classical neurotransmitter systems have been shown to regulate the LH surge. Among these, several lines of evidence indicate that the monoamine neurotransmitter serotonin (5-HT) has an excitatory, permissive, influence over the generation of the surge, via activation of type 2 5-HT (5-HT2) receptors. The mechanisms through which this occurs, however, are not well understood. We hypothesized that 5-HT exerts its influence on the surge by stimulating RP3VKISS1 neurons in a 5-HT2 receptor-dependent manner. Methods We tested this using kisspeptin neuron-specific calcium imaging and electrophysiology in brain slices obtained from male and female mice. Results We show that exogenous 5-HT reversibly increases the activity of the majority of RP3VKISS1 neurons. This effect is more prominent in females than in males, is likely mediated directly at RP3VKISS1 neurons and requires activation of 5-HT2 receptors. The functional impact of 5-HT on RP3VKISS1 neurons, however, does not significantly vary during the estrous cycle. Conclusion Taken together, these data suggest that 5-HT2 receptor-mediated stimulation of RP3VKISS1 neuron activity might be involved in mediating the influence of 5-HT on the preovulatory LH surge.
Collapse
Affiliation(s)
- Carrie Buo
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Robin J. Bearss
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Alyssa G. Novak
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Anna E. Anello
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Jordan J. Dakin
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Richard Piet
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
2
|
Bódis J, Sulyok E, Kőszegi T, Prémusz V, Várnagy Á, Koppán M. Serum and follicular fluid levels of serotonin, kisspeptin, and brain-derived neurotrophic factor in patients undergoing in vitro fertilization: an observational study : Neurohormones in patients receiving IVF. J Int Med Res 2019; 48:300060519879330. [PMID: 31868047 PMCID: PMC7604995 DOI: 10.1177/0300060519879330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE This study aimed to examine the effect of interactions between serotonin (5-HT), brain-derived neurotrophic factor (BDNF), and kisspeptin on the reproductive potential in women receiving in vitro fertilization (IVF). METHODS Paired serum and follicular fluid (FF) samples were obtained from 30 consecutive patients receiving IVF. Primary and secondary outcome measures were the rate of chemical/clinical pregnancy and the number of mature oocytes and embryos, respectively. Serum and FF 5-HT, BDNF, kisspeptin, and platelet-activating factor (PAF) levels were measured by enzyme-linked immunosorbent assay. RESULTS In response to ovarian hyperstimulation, serum 5-HT and kisspeptin levels significantly increased, whereas serum BDNF and PAF levels remained unchanged. These factors were detected in FF, but they were unrelated to serum levels. FF 5-HT and BDNF levels were positively correlated. Serum kisspeptin levels were negatively correlated with FF BDNF and serum and FF PAF levels. Women who were pregnant had significantly lower FF BDNF levels compared with women who were not pregnant (21.96±12.75 vs 47.63±52.90 µg/mL). Multivariate stepwise linear regression and logistic regression analyses showed that only 5-HT and kisspeptin improved IVF outcome. CONCLUSIONS This study indicates a role of serotoninergic mechanisms in success of IVF, but the contribution of interacting neuropeptides requires additional investigation.
Collapse
Affiliation(s)
- József Bódis
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, Pécs, Hungary
| | - Endre Sulyok
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - Tamás Kőszegi
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, Pécs, Hungary
| | - Viktória Prémusz
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, Pécs, Hungary.,Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - Ákos Várnagy
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, Pécs, Hungary.,Department of Obstetrics and Gynaecology, Medical School, University of Pécs, Pécs, Hungary
| | - Miklós Koppán
- Department of Obstetrics and Gynaecology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
3
|
Mazarati A, Galanopoulou AS. Commentary on Li et al. "Disrupted female estrous cyclicity in the intrahippocampal kainic acid mouse model of temporal lobe epilepsy". Epilepsia Open 2018; 3:131-133. [PMID: 29881794 PMCID: PMC5983120 DOI: 10.1002/epi4.12116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2018] [Indexed: 11/07/2022] Open
|
4
|
Prasad P, Ogawa S, Parhar IS. Serotonin reuptake inhibitor citalopram inhibits GnRH synthesis and spermatogenesis in the male zebrafish. Biol Reprod 2015; 93:102. [PMID: 26157069 DOI: 10.1095/biolreprod.115.129965] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/29/2015] [Indexed: 01/10/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are widely used antidepressants for the treatment of depression. However, SSRIs cause sexual side effects such as anorgasmia, erectile dysfunction, and diminished libido that are thought to be mediated through the serotonin (5-hydroxytryptamine, 5-HT) system. In vertebrates, gonadotropin-releasing hormone (GnRH) neurons play an important role in the control of reproduction. To elucidate the neuroendocrine mechanisms of SSRI-induced reproductive failure, we examined the neuronal association between 5-HT and GnRH (GnRH2 and GnRH3) systems in the male zebrafish. Double-label immunofluorescence and confocal laser microscopy followed by three-dimensional construction analysis showed close associations between 5-HT fibers with GnRH3 fibers and preoptic-GnRH3 cell bodies, but there was no association with GnRH2 cell bodies and fibers. Quantitative real-time PCR showed that short-term treatment (2 wk) with low to medium doses (4 and 40 μg/L, respectively) of citalopram significantly decreased mRNA levels of gnrh3, gonadotropins (lhb and fshb) and 5-HT-related genes (tph2 and sert) in the male zebrafish. In addition, short-term citalopram treatment significantly decreased the fluorescence density of 5-HT and GnRH3 fibers compared with controls. Short-term treatment with low, medium, and high (100 μg/L) citalopram doses had no effects on the profiles of different stages of spermatogenesis, while long-term (1 mo) citalopram treatment with medium and high doses significantly inhibited the different stages of spermatogenesis. These results show morphological and functional associations between the 5-HT and the hypophysiotropic GnHR3 system, which involve SSRI-induced reproductive failures.
Collapse
Affiliation(s)
- Parvathy Prasad
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
5
|
López-Doval S, Salgado R, Fernández-Pérez B, Lafuente A. Possible role of serotonin and neuropeptide Y on the disruption of the reproductive axis activity by perfluorooctane sulfonate. Toxicol Lett 2015; 233:138-47. [PMID: 25623392 DOI: 10.1016/j.toxlet.2015.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 01/09/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is an endocrine disruptor, whose exposure can induce several alterations on the reproductive axis activity in males during adulthood. This study was undertaken to evaluate the possible role of serotonin and neuropeptide Y (NPY) on the disruption of the hypothalamic-pituitary-testicular (HPT) axis induced by PFOS in adult male rats. For that, adult male rats were orally treated with 0.5; 1.0; 3.0 and 6.0mg of PFOS/kg/day for 28 days. After PFOS exposure, serotonin concentration increased in the anterior and mediobasal hypothalamus as well as in the median eminence. The metabolism of this amine (expressed as the ratio 5-hydroxyindolacetic acid (5-HIAA)/serotonin) was diminished except in the anterior hypothalamus, with the doses of 3.0 and 6.0mg/kg/day, being this dose 0.5mg/kg/day in the median eminence. In general terms, PFOS-treated rats presented a decrease of the hypothalamic concentration of the gonadotropin releasing hormone (GnRH) and NPY. A diminution of the serum levels of the luteinizing hormone (LH), testosterone and estradiol were also shown. These results suggest that both serotonin and NPY could be involved in the inhibition induced by PFOS on the reproductive axis activity in adult male rats.
Collapse
Affiliation(s)
- S López-Doval
- Laboratory of Toxicology, Sciences School, University of Vigo, Las Lagunas S/n, 32004 Ourense, Spain
| | - R Salgado
- Laboratory of Toxicology, Sciences School, University of Vigo, Las Lagunas S/n, 32004 Ourense, Spain
| | - B Fernández-Pérez
- Laboratory of Toxicology, Sciences School, University of Vigo, Las Lagunas S/n, 32004 Ourense, Spain
| | - A Lafuente
- Laboratory of Toxicology, Sciences School, University of Vigo, Las Lagunas S/n, 32004 Ourense, Spain.
| |
Collapse
|
6
|
Moran MJ, Ayala ME, Gallegos E, Romero J, Chavira R, Damián-Matsumura P, Domínguez R. Effects of systemic administration or intrabursal injection of serotonin on puberty, first ovulation and follicular development in rats. Reprod Fertil Dev 2013; 25:1105-14. [PMID: 23174218 DOI: 10.1071/rd12253] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/07/2012] [Indexed: 11/23/2022] Open
Abstract
To elucidate the role of serotonin in the onset of puberty, the effects of both systemic and in-ovarian bursa administration of serotonin on the neuroendocrine mechanism that modulates the onset of puberty, follicular development and first ovulation were evaluated. Two experiments were carried out. For the first, 25 or 37.5 mg kg–1 of bodyweight of serotonin creatinine sulfate was administered by a subcutaneous route to 30-day-old female rats. In the second experiment, serotonin creatinine sulfate was administered directly into the ovarian bursa of 34-day-old female rats. Systemic administration of 25 or 37.5 mg kg–1 of serotonin creatinine sulfate induced a delay in the ages of vaginal opening and first vaginal oestrus, a decrease in the number of ovulating animals, and serum concentrations of FSH, LH, oestradiol and progesterone. An increase in the number of Class 3 (>500 μm) and atretic follicles was observed in the ovaries of these animals. The administration of serotonin creatinine sulfate in the ovarian bursa did not modify the onset of puberty and ovulation, but a reduced serum concentration of oestradiol was observed. Our results suggest that serotonin acts on the components of the hypothalamus–hypophysis–ovary axis by modulating follicular development, ovarian functions and the onset of puberty.
Collapse
Affiliation(s)
- M J Moran
- Unidad de Investigación en Biología de la Reproducción, Laboratorio de Pubertad. Facultad de Estudios Superiores Zaragoza, UNAM. AP 9-020, CP 15000, México D.F., México
| | | | | | | | | | | | | |
Collapse
|
7
|
Novel tetrahydropyrido[3,2-c]pyrroles as 5-HT7 antagonists. Bioorg Med Chem Lett 2011; 21:42-4. [DOI: 10.1016/j.bmcl.2010.11.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 11/17/2010] [Indexed: 11/20/2022]
|
8
|
Rahman S, Khan IA, Thomas P. Tryptophan hydroxylase: a target for neuroendocrine disruption. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:473-494. [PMID: 21790322 DOI: 10.1080/10937404.2011.578563] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Tryptophan hydroxylase (TPH), the rate-limiting enzyme in serotonin (5-HT) synthesis, performs an essential role in the maintenance of serotonergic functions in the central nervous system (CNS), including regulation of the neuroendocrine system controlling reproduction. The results of recent studies in a teleost model of neuroendocrine disruption, Atlantic croaker, indicated that hypothalamic TPH is a major site of interference of hypothalamic-pituitary-gonadal function by environmental stressors. The effects of exposure to two different types of environmental stressors, low dissolved oxygen (hypoxia) and a polychlorinated biphenyl mixture (Aroclor 1254), on the stimulatory brain serotonergic system controlling reproductive neuroendocrine function in Atlantic croaker are reviewed. Exposure to both stressors produced decreases in TPH activity, which were accompanied by a fall in hypothalamic 5-HT and gonadotropin-releasing hormone (GnRH I) content in the preoptic-anterior hypothalamic area and were associated with reduction in luteinizing hormone (LH) secretion and gonadal development. Pharmacological restoration of hypothalamic 5-HT levels after exposure to both stressors also restored neuroendocrine and reproductive functions, indicating that the serotonergic system is an important site for hypoxia- and Aroclor 1254-induced inhibition of reproductive neuroendocrine functions. The mechanisms underlying downregulation of TPH activity by these stressors remain unclear but may involve alterations in hypothalamic antioxidant status. In support of this hypothesis, treatment with an antioxidant, vitamin E, was found to reverse the inhibitory effects of Aroclor 1254 on TPH activity. The results suggest that TPH is a major target for neuroendocrine disruption by diverse environmental stressors.
Collapse
Affiliation(s)
- Saydur Rahman
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas 78373, USA
| | | | | |
Collapse
|
9
|
Sudhakumari CC, Senthilkumaran B, Raghuveer K, Wang DS, Kobayashi T, Kagawa H, Krishnaiah C, Dutta-Gupta A, Nagahama Y. Dimorphic expression of tryptophan hydroxylase in the brain of XX and XY Nile tilapia during early development. Gen Comp Endocrinol 2010; 166:320-9. [PMID: 19925800 DOI: 10.1016/j.ygcen.2009.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 10/15/2009] [Accepted: 11/10/2009] [Indexed: 12/11/2022]
Abstract
Serotonin (5-HT) is well known for modulating the release of GnRH and gonadotropin in teleosts. Reports on increased female:male ratio after the blockade of 5-HT biosynthesis proposed a role for 5-HT in brain sex differentiation. Two types of tryptophan hydroxylase (Tph), rate-limiting enzyme in the biosynthesis of 5-HT were cloned from vertebrates. In the present study, we cloned Tph from brain and evaluated its importance during early development of XX and XY Nile tilapia. Tph cloned from tilapia brain is 1888 bp in length and it encodes predicted protein of 462 amino acid residues. Tph activity of tilapia was confirmed by demonstrating the conversion of L-tryptophan to 5-hydroxy tryptophan by the recombinant protein after transient transfection of this cDNA clone in COS-7 cells. Northern blot identified single transcript around 2kb in male brain. Tissue distribution of Tph revealed high abundance in brain, kidney, liver and testis. Semi-quantitative RT-PCR revealed exclusive expression of Tph in the male brain from 5 to 20 days post hatch (dph) while in the female brain, it was from 25 dph. These results were authenticated by localization of Tph transcripts in olfactory bulb-telencephalon region of 11 dph male brain using in situ hybridization. Tph immunoreactivity (-ir) was also evident in the nucleus preopticus-periventricularis area of male brain as early as 12 dph. However, Tph-ir was observed in several regions of both male and female brain without any distinction from 30 dph. Dimorphic expression pattern of Tph during early brain development around the critical period (7-21 dph) of gonadal sex determination and differentiation may implicate a role for Tph in brain sex differentiation of tilapia.
Collapse
Affiliation(s)
- C C Sudhakumari
- Department of Animal Sciences, School of Life Sciences-Centre of Advanced Study, University of Hyderabad, P.O. Central University, Hyderabad 500046, Andhra Pradesh, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Moxon S. Dominance as adaptive stressing and ranking of males, serving to allocate reproduction by differential self-suppressed fertility: towards a fully biological understanding of social systems. Med Hypotheses 2009; 73:5-14. [PMID: 19375872 DOI: 10.1016/j.mehy.2009.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 02/19/2009] [Accepted: 02/21/2009] [Indexed: 11/19/2022]
Abstract
Dominance is a biological concept of an asymmetric 'power' relationship between (any pair of) individuals, as a result of previous encounters with others biasing likelihood of contesting. That this requires dedicated neural structure shows that dominance is adaptive; and it is usually thought that fitness is increased through dominance (hierarchy) minimising mutually unproductive contest over resources, and/or determining access to or control over resources. But highly inconsistent data indicates that this operational definition is too wide, and given clear evidence that dominance is invariably same-sex, it would seem instead to function primarily to allocate reproduction. Dominance contest exposes individual differences in metabolic vigor especially, but also in various other, including sophisticated attributes; and by a self-organising process there is ranking of same-sex individuals in a hierarchy. But this achieves nothing in itself without an integral mechanism of corresponding individual variable self-suppression of the physiology re reproduction--and mate choice with rank as the criteria. Reproductive suppression would appear to vary along a continuum, from in some species (most 'cooperative breeders') a 100% reproductive skew with total suppression of all individuals bar the sole breeder to, in most others, a gradient down the length of the dominance hierarchy. The mechanism in most species is directly either hormonal or pheromonal, on top of an indirect consequence of the stress caused by relatively low rank. Dominance would seem to have evolved as a major instrument of the proposed 'genetic filter' function of the male, whereby in effect accumulated deleterious genetic material is 'quarantined' in the male half of the lineage from where it is purged, so as to keep this source of reproductive logjam away from females, thereby to avoid amplifying the problem of the female being necessarily the limiting factor in reproduction. The theory makes predictions mutually exclusive of the consensus model, that dominance/DH is: same-sex only; present whenever, within one or both sexes, there is potential conflict over reproduction, and there is no mechanism to preclude this, but otherwise is absent; always associated with some degree of differential physiological reproductive suppression. This new conceptualization of dominance has major implications for the social as well as biological sciences, in that resource-competition models of the basis of sociality will have to give way to a thoroughgoing biological understanding that places centre-stage not resources but reproduction; with consequent radical revision of notions of 'power'.
Collapse
|
11
|
5-HT7 receptor deletion enhances REM sleep suppression induced by selective serotonin reuptake inhibitors, but not by direct stimulation of 5-HT1A receptor. Neuropharmacology 2008; 56:448-54. [PMID: 18948124 DOI: 10.1016/j.neuropharm.2008.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 09/22/2008] [Accepted: 09/23/2008] [Indexed: 11/24/2022]
Abstract
5-HT(7) receptors are involved in REM sleep and possibly in mood disorders. REM sleep suppression and antidepressant-like behavior is observed in 5-HT(7)(-/-) mice and in rats treated with 5-HT(7) receptor antagonists. We recently demonstrated that pharmacological blockade of 5-HT(7) receptors enhances REM sleep suppression and antidepressant-like behavior induced by citalopram in rodents. It has been hypothesized that the effect of citalopram on sleep is essentially mediated by the activation of 5-HT(1A) receptors. The present study investigates the impact of 5-HT(7) receptor gene deletion on the effect of various reuptake inhibitors on REM sleep and probes the role of 5-HT(1A) receptors in this response. Three SSRIs (citalopram, fluoxetine and paroxetine) but not the tricyclic antidepressant desipramine had a significantly stronger REM sleep suppressive effect in 5-HT(7)(-/-) mice compared to 5-HT(7)(+/+) mice. In contrast, REM sleep was similarly reduced in 5-HT(7)(+/+) mice and 5-HT(7)(-/-) mice after treatment with the 5-HT(1A) receptor agonist ipsapirone. Furthermore, both 5-HT(7)(+/+) and 5-HT(7)(-/-) mice displayed the same increase in REM sleep duration produced by the 5-HT(1A) receptor antagonist WAY-100635. These findings indicate that 5-HT(7) receptor deletion augments the effect of various SSRIs on REM sleep suppression and that this effect is distinct from those mediated via 5-HT(1A) receptors.
Collapse
|
12
|
Recent Advances on the 5-HT5A, 5-HT6 and 5-HT7 Receptors. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2008. [DOI: 10.1016/s0065-7743(08)00002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
13
|
Pronina TS, Calas A, Seif I, Voronova SN, Nanaev AK, Ugrumov MV. Migration and differentiation of gonadotropin-releasing hormone-producing neurons in the brain of mouse fetus exposed to excess of serotonin. J EVOL BIOCHEM PHYS+ 2007. [DOI: 10.1134/s0022093007030118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Siddiqui A, Niazi A, Shaharyar S, Wilson CA. The 5HT(7) receptor subtype is involved in the regulation of female sexual behaviour in the rat. Pharmacol Biochem Behav 2007; 87:386-92. [PMID: 17561239 DOI: 10.1016/j.pbb.2007.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 05/04/2007] [Accepted: 05/17/2007] [Indexed: 11/16/2022]
Abstract
5-Hydroxytryptamine (5-HT) regulates sexual behaviour in the female rat via a number of its receptors. The role of the 5HT(7) receptor was investigated in ovariectomised rats primed with 10 mug oestradiol benzoate (OB) followed at 48 h by 0.5 mg progesterone, which induced receptivity in approximately half of the animals. These animals were treated with three agonists all effective at 5HT(1A) and 5HT(7) receptors; 5-hydroxytryptophan, 8-hydroxy-2-(di-n-propylamino)tetralin 1-Br (8-OH DPAT) and 5-carboxy-aminotryptamine (5-CT) in the presence or absence of selective 5HT(1A) and 5HT(7) antagonists: WAY 100135 and SB 269970-A. The three agonists inhibited lordosis in the receptive group, and this was prevented by both the selective 5HT(1A) and 5HT(7) antagonists. When given alone, both WAY 100135 and SB 269970-A increased the lordosis in the non-receptive rats indicating that endogenous 5-HT acting on 5HT(1A) and 5HT(7) receptors may have a tonic inhibitory effect on receptivity. A comparison of OB priming doses on the effect of serotoninergic agents showed that the higher OB doses attenuated the inhibitory effect of 8-OH DPAT and enhanced the stimulatory effect of WAY 100135, but did not affect the actions of 5-CT or SB 269970-A. The interaction between oestradiol and 5-HT activity on sexual behaviour may therefore be selective to the 5HT(1A) pathway.
Collapse
Affiliation(s)
- Arif Siddiqui
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan.
| | | | | | | |
Collapse
|
15
|
Uday G, Pravinkumar B, Manish W, Sudhir U. LHRH antagonist attenuates the effect of fluoxetine on marble-burying behavior in mice. Eur J Pharmacol 2007; 563:155-9. [PMID: 17368614 DOI: 10.1016/j.ejphar.2007.02.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 02/02/2007] [Accepted: 02/06/2007] [Indexed: 10/23/2022]
Abstract
Leuprolide--a luteinizing hormone-releasing hormone (LHRH) agonist, dose dependently (100, 200 and 300 microg/kg, s.c.) inhibited marble-burying behavior in mice, which was comparable to that of fluoxetine (10 and 15 mg/kg, i.p.)--a drug used in the treatment of obsessive-compulsive disorder. Co-administration of sub-effective dose of leuprolide (50 microg/kg) and fluoxetine (5 mg/kg) significantly inhibited marble-burying-behavior. Pre-treatment with parachlorophenylalanine [300 mg/kg, i.p. (x3 days)]--a serotonin depleting agent, reversed the effect of fluoxetine, whereas partially attenuated the effect of leuprolide. Further, LHRH antagonist pre-treatment (2.5 microg/mouse, s.c.) completely blocked the effect of leuprolide and reduced the effect of fluoxetine. Motor activity remained unaffected after all treatments. In conclusion, the findings suggest that fluoxetine also implicates LHRH in its anti-compulsive effect.
Collapse
Affiliation(s)
- Gaikwad Uday
- Department of Pharmaceutical Sciences, Rashtrasant Tukdoji Maharaj Nagpur University, Nagpur - 440 033, Maharashtra, India
| | | | | | | |
Collapse
|
16
|
Carretti N, Florio P, Bertolin A, Costa CVL, Allegri G, Zilli G. Serum fluctuations of total and free tryptophan levels during the menstrual cycle are related to gonadotrophins and reflect brain serotonin utilization. Hum Reprod 2005; 20:1548-53. [PMID: 15831515 DOI: 10.1093/humrep/deh795] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Serotoninergic (5-HT) neurons are suggested to regulate estrous cycle in animal models. In the present study we evaluated whether a relationship exists between the serotoninergic precursors in the central nervous system and the gonadotrophin-ovarian cyclic function. METHODS We measured 5-HT precursors [free (FT) and total (TT) tryptophan] and LH, FSH and 17beta-estradiol (E2) levels in the serum of 15 fertile women with normal menstrual cycles during the follicular (cycle days 1-5, 7-11), mid-cycle (cycle days 14-16) and luteal (cycle days 17-19, 22-24) phases. RESULTS TT and FT were significantly increased in the 7-11 and 17-19 cycle days and were decreased at mid-cycle (P < 0.01), with a cyclic and opposite behaviour when compared to that of FSH and LH. Indeed, correlation analysis through the matrix of mean values showed that LH was negatively correlated to TT (r = -0.636) and FT (r = -0.574), as well as FSH (TT, r = -0.655; FT, r = -0.663), and that TT and FT were positively correlated to each other (r = 0.801; P < 0.001). Furthermore, whilst the two FT peaks reached approximately the same levels in the follicular and luteal phase, TT levels were approximately 30% higher in the luteal than in the follicular phase of the cycle: thus in the first (follicular) phase FT peak was relatively higher than that of TT, whereas the contrary occurred in the second (luteal) phase of the cycle. CONCLUSIONS Both TT and FT levels have cyclic variations throughout the menstrual cycle, being lowest at mid-cycle (14-16 cycle days), concomitant with the highest LH and FSH concentrations, and higher before and after mid-cycle phase, coinciding with the lowest circulating LH/FSH levels. Since TT and FT levels in the plasma have cyclic changes, our study: (i) suggests that a consumption of serum serotonin precursors takes place concomitant with gonadotrophin release during menstrual cycle; (ii) may represent an in vivo model to investigate this relationship in women in different physiopathological conditions.
Collapse
Affiliation(s)
- N Carretti
- Department of Pediatrics, Obstetrics and Reproductive Medicine, University of Siena Policlinico Le Scotte, Viale Bracci, 53100 Siena, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
Pronina T, Ugrumov M, Calas A, Seif I, Tramu G. Influence of monoamines on differentiating gonadotropin-releasing hormone neurones in foetal mice. J Neuroendocrinol 2003; 15:925-32. [PMID: 12969236 DOI: 10.1046/j.1365-2826.2003.01072.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study evaluated the influence of monoamines, serotonin (5-hydroxytryptamine, 5-HT) and noradrenaline, on differentiating gonadotropin-releasing hormone (GnRH)-producing neurones in foetal mice. The differentiation and migration of GnRH neurones were compared in Tg8 mice (the knocked-out gene encoding monoamine oxidase A) with increased levels of 5-HT and noradrenaline and in C3H mice with normal metabolism of monoamines in C3H mice. To achieve this, immunocytochemistry for GnRH combined with quantitative and semiquantitative image analysis were employed. GnRH neurones in foetuses at the 18th embryonic day were detected in the forebrain along the trajectory of their migration from the olfactory bulbs to the hypothalamic retrochiasmatic region. The total number of GnRH neurones in the forebrain in knockout mice was significantly lower compared to C3H mice, suggesting an inhibiting influence of monoamines on the proliferation of precursor cells. The fraction of GnRH neurones in the caudal part of the trajectory of their migration in Tg8 mice exceeded significantly those in C3H foetuses, whereas there was a reverse in the rostral part of the trajectory. These data suggest that an excess of 5-HT and noradrenaline served to accelerate the GnRH neurone migration in Tg8 mice. Moreover, an excess of 5-HT and noradrenaline provided a minor effect on the area and optical density of GnRH neurones (i.e. on GnRH neurone differentiation). Thus, an excess of 5-HT and noradrenaline appears to inhibit the proliferation of the precursor cells of GnRH neurones and stimulates the GnRH neurone migration to the place of their final location in the septo-preoptic region.
Collapse
Affiliation(s)
- T Pronina
- Laboratory of Hormonal Regulations, Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | |
Collapse
|
18
|
Pronina T, Ugrumov M, Adamskaya E, Kuznetsova T, Shishkina I, Babichev V, Calas A, Tramu G, Mailly P, Makarenko I. Influence of serotonin on the development and migration of gonadotropin-releasing hormone neurones in rat foetuses. J Neuroendocrinol 2003; 15:549-58. [PMID: 12716405 DOI: 10.1046/j.1365-2826.2003.01029.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study used a pharmacological approach to evaluate the consequences of the metabolic perturbations of neurotransmitters on brain development. Pregnant rats received p-chlorophenylalanine (pCPA), an inhibitor of serotonin (5-hydroxytryptamine, 5-HT) synthesis, or saline (control) from the 11th day of gestation once or daily up to the 15th, 17th and 20th day, followed by processing of the forebrain and/or nasal cranium of foetal males and females for high-performance liquid chromatography of monoamines, radioimmunoassay of gonadotropin-releasing hormone (GnRH) and quantitative and semiquantitative immunocytochemistry for GnRH. The pCPA treatment resulted in a 50-70% depletion of 5-HT in the nasal crania and forebrains at any studied age. Radioimmunoassay showed no change in GnRH content in 5-HT deficient foetuses at E16 compared to controls, being higher in both cases in the rostral forebrain than in the hypothalamus. In controls at E21, the GnRH content in the hypothalamus exceeded that in the rostral forebrain, whereas in the 5-HT deficient group the opposite was found. These data suggest that 5-HT provided a stimulating effect on GnRH neurone migration, and this was confirmed by quantification of GnRH-immunoreactive neurones in the forebrain along the trajectory of their migration. At E18 and E21, the fractions of GnRH neurones in the rostral part of the trajectory in pCPA-treated foetuses were greater than those in control foetuses but the opposite was true for the caudal part of the trajectory. Moreover, 5-HT appeared to control the proliferation of the precursor cells of GnRH neurones and their differentiation, as derived from the observations of the increased number of GnRH neurones in the forebrain of foetuses of both sexes, as well as the region-specific decreased neuronal size and content of GnRH in 5-HT-deficient females. Thus, 5-HT appears to contribute to the regulation of the origin, differentiation and migration of GnRH neurones.
Collapse
Affiliation(s)
- T Pronina
- Laboratory of Hormonal Regulations, Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov str., Moscow 117808, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Shah BH, Soh JW, Catt KJ. Dependence of gonadotropin-releasing hormone-induced neuronal MAPK signaling on epidermal growth factor receptor transactivation. J Biol Chem 2003; 278:2866-75. [PMID: 12446705 DOI: 10.1074/jbc.m208783200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hypothalamic decapeptide, gonadotropin-releasing hormone (GnRH), utilizes multiple signaling pathways to activate extracellularly regulated mitogen-activated protein kinases (ERK1/2) in normal and immortalized pituitary gonadotrophs and transfected cells expressing the GnRH receptor. In immortalized hypothalamic GnRH neurons (GT1-7 cells), which also express GnRH receptors, GnRH, epidermal growth factor (EGF), and phorbol 12-myristate 13-acetate (PMA) caused marked phosphorylation of ERK1/2. This action of GnRH and PMA, but not that of EGF, was primarily dependent on activation of protein kinase C (PKC), and the ERK1/2 responses to all three agents were abolished by the selective EGF receptor kinase inhibitor, AG1478. Consistent with this, both GnRH and EGF increased tyrosine phosphorylation of the EGF receptor. GnRH and PMA, but not EGF, caused rapid phosphorylation of the proline-rich tyrosine kinase, Pyk2, at Tyr(402). This was reduced by Ca(2+) chelation and inhibition of PKC, but not by AG1478. GnRH stimulation caused translocation of PKC alpha and -epsilon to the cell membrane and enhanced the association of Src with PKC alpha and PKC epsilon, Pyk2, and the EGF receptor. The Src inhibitor, PP2, the C-terminal Src kinase (Csk), and dominant-negative Pyk2 attenuated ERK1/2 activation by GnRH and PMA but not by EGF. These findings indicate that Src and Pyk2 act upstream of the EGF receptor to mediate its transactivation, which is essential for GnRH-induced ERK1/2 phosphorylation in hypothalamic GnRH neurons.
Collapse
Affiliation(s)
- Bukhtiar H Shah
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
20
|
Martínez de la Escalera G, Clapp C. Regulation of gonadotropin-releasing hormone secretion: insights from GT1 immortal GnRH neurons. Arch Med Res 2001; 32:486-98. [PMID: 11750724 DOI: 10.1016/s0188-4409(01)00320-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The study of the mammalian GnRH system has been greatly advanced by the development of immortalized cell lines. Of particular relevance are the so-called GT1 cells. Not only do they exhibit many of the known physiologic characteristics of GnRH neurons in situ, but in approximately one decade have yielded new insights regarding the intrinsic physiology of individual cells and networks of GnRH neurons, as well as the nature of central and peripheral signals that directly modulate their function. For instance, valuable information has been generated concerning intrinsic properties of the system such as the inherent pulsatile pattern of secretion displayed by networks of GT1 cells. Concepts regarding feedback regulation and autocrine feedback of GnRH neurons have been dramatically expanded. Likewise, the nature of the receptors and of the proximal and distal signal transduction mechanisms involved in the actions of multiple afferent signals has been identified. Understanding this neuronal system allows a better comprehension of the hypothalamic-pituitary-gonadal axis and of the regulatory influences that ultimately control reproductive competence.
Collapse
Affiliation(s)
- G Martínez de la Escalera
- Centro de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Mexico.
| | | |
Collapse
|
21
|
Becquet D, Guillaumond F, Bosler O, François-Bellan AM. Long-term variations of AP-1 composition after CRH stimulation: consequence on POMC gene regulation. Mol Cell Endocrinol 2001; 175:93-100. [PMID: 11325519 DOI: 10.1016/s0303-7207(01)00393-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has been shown previously that the CRH-induced POMC gene transcription in the corticotroph cell line AtT-20 involves an increase in AP-1 DNA binding activity that remained elevated for at least 24 h, while induction of c-fos was transient. We showed here that there were dramatic changes in protein components of AP-1 including an initial recruitment of the transcriptional activators c-Fos and Jun-B then of Fra-2 and Jun-D. Changes in AP-1 composition were concomitant with a decrease in POMC mRNA. Moreover, the presence of Fra-2/Jun-D dimers suppressed the CRH-induction of c-fos mRNA expression as well as c-Fos/Jun-B recruitment in AP-1 complexes, suggesting the existence of autoregulatory loops of AP-1 composition that involve complex interactions between the different members of the Jun and Fos families. It is concluded that CRH stimulation of corticotroph cells involves successive recruitment of activators and repressors, possibly contributing to prevent over expression of POMC.
Collapse
Affiliation(s)
- D Becquet
- Interactions Fonctionnelles en Neuroendocrinologie, INSERM U 501 Faculté de Médecine Nord, Bd P. Dramard 13916 cedex 20, Marseille, France.
| | | | | | | |
Collapse
|
22
|
Khan IA, Thomas P. Disruption of neuroendocrine control of luteinizing hormone secretion by aroclor 1254 involves inhibition of hypothalamic tryptophan hydroxylase activity. Biol Reprod 2001; 64:955-64. [PMID: 11207213 DOI: 10.1095/biolreprod64.3.955] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Mechanisms governing the effect of polychlorinated biphenyl (PCB) toxicity on hypothalamic serotonergic function and the neuroendocrine system controlling LH secretion were investigated in Atlantic croaker (Micropogonias unulatus) exposed to the PCB mixture Aroclor 1254 (1 microg x g body weight(-1) x day(-1)) in the diet for 30 days. PCB treatment caused a decrease in hypothalamic 5-hydroxytryptamine (5-HT) concentrations and significant inhibition of hypothalamic tryptophan hydroxylase (TPH), the rate-limiting enzyme in 5-HT synthesis, but did not alter the activity of monoamine oxidase, the catabolic enzyme. Further, PCB treatment caused significant decreases in GnRH content in the preoptic-anterior hypothalamic area. Significant decreases in pituitary GnRH receptor concentrations and the LH response to the GnRH analogue (GnRHa) were also observed in PCB-exposed fish, possibly as a consequence of a decline in GnRH release. The possible association between impaired serotonergic and neuroendocrine functions after PCB treatment was explored using serotonergic drugs. Treatment of croaker with p-chlorophenylalanine, an irreversible TPH inhibitor, mimicked the effects of PCB on the GnRH system and the LH response to GnRHa. Bypassing the TPH-dependent hydroxylation step with the administration of 5-hydroxytryptophan restored 5-HT to control levels and prevented the deleterious effects of PCB on the neuroendocrine parameters. Moreover, slow-release GnRH implants prevented the PCB-induced decline in GnRH receptors and restored the LH response to GnRHa, suggesting that GnRH therapy can reverse PCB-induced disruption of LH secretion. These results demonstrate that TPH is one of the targets of PCB neurotoxicity and indicate that a decrease in 5-HT availability in PCB-exposed croaker results in disruption of the stimulatory 5-HT/GnRH pathway controlling LH secretion.
Collapse
Affiliation(s)
- I A Khan
- The University of Texas at Austin, Marine Science Institute, Port Aransas, Texas 78373, USA.
| | | |
Collapse
|
23
|
Smith BN, Sollars PJ, Dudek FE, Pickard GE. Serotonergic modulation of retinal input to the mouse suprachiasmatic nucleus mediated by 5-HT1B and 5-HT7 receptors. J Biol Rhythms 2001; 16:25-38. [PMID: 11220775 DOI: 10.1177/074873040101600104] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Serotonin (5-HT) and 5-HT receptor agonists can modify the response of the mammalian suprachiasmatic nucleus (SCN) to light. It remains uncertain which 5-HT receptor subtypes mediate these effects. The effects of 5-HT receptor activation on optic nerve-mediated input to SCN neurons were examined using whole-cell patch-clamp recordings in horizontal slices of ventral hypothalamus from the male mouse. The hypothesis that 5-HT reduces the effect of retinohypothalamic tract (RHT) input to the SCN by acting at 5-HT1B receptors was tested first. As previously described in the hamster, a mixed 5-HT(1A/1B) receptor agonist, 1-[3-(trifluoromethyl)phenyl]-piperazine hydrochloride (TFMPP), reduced the amplitude of glutamatergic excitatory postsynaptic currents (EPSCs) evoked by selectively stimulating the optic nerve of wild-type mice. The agonist was negligibly effective in a 5-HT1B receptor knockout mouse, suggesting minimal contribution of 5-HT1A receptors to the TFMPP-induced reduction in the amplitude of the optic nerve-evoked EPSC. We next tested the hypothesis that 5-HT also reduces RHT input to the SCN via activation of 5-HT7 receptors. The mixed 5-HT(1A/7) receptor agonist, R(+)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide (8-OH-DPAT), reduced the evoked EPSC amplitude in both wild-type and 5-HT1B receptor knockout mice. This effect of 8-OH-DPAT was minimally attenuated by the selective 5-HT1A receptor antagonist WAY 100635 but was reversibly and significantly reduced in the presence of ritanserin, a mixed 5-HT(2/7) receptor antagonist. Taken together with the authors' previous ultrastructural studies of 5-HT1B receptors in the mouse SCN, these results indicate that in the mouse, 5-HT reduces RHT input to the SCN by acting at 5-HT1B receptors located on RHT terminals. Moreover, activation of 5-HT7 receptors in the mouse SCN, but not 5-HT1A receptors, also results in a reduction in the amplitude of the optic nerve-evoked EPSC. The findings indicate that 5-HT may modulate RHT glutamatergic input to the SCN through 2 or more 5-HT receptors. The likely mechanism of altered RHT glutamatergic input to SCN neurons is an alteration of photic effects on the SCN circadian oscillator.
Collapse
Affiliation(s)
- B N Smith
- Department of Anatomy and Neurobiology, Colorado State University, Fort Collins 80523-1760, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Identification of three splice variants of the 5-HT7 receptor suggests a possible diversity in 5-HT7 receptor action. Indeed, 5-HT7 receptors have been implicated in the pathophysiology of several disorders; they play a role in smooth muscle relaxation within the vasculature and in the gastrointestinal tract. However, most of these assignments are derived from receptor localization studies and investigations using nonselective ligands, and are therefore mainly suggestive. The development of selective 5-HT7 receptor antagonists will be of utmost importance in determining the actual physiological and pharmacological roles of this receptor. Major challenges of 5-HT7 receptor research are determination of the transcriptional regulation of the gene encoding the 5-HT7 receptor and elucidation of the differences in regulation and signalling of its four gene products.
Collapse
Affiliation(s)
- P Vanhoenacker
- Department of Molecular Biology, Research Unit for Eukaryotic Gene Expression and Signal Transduction, University of Gent-VIB, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium.
| | | | | |
Collapse
|