Chévez-Barrios P, Wiseman AL, Rojas E, Ou CN, Lieberman MW. Cataract development in gamma-glutamyl transpeptidase-deficient mice.
Exp Eye Res 2000;
71:575-82. [PMID:
11095909 DOI:
10.1006/exer.2000.0913]
[Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was undertaken to analyse the relationship of lens glutathione (GSH) and light to cataract development in mice deficient in gamma-glutamyl transpeptidase (GGT). These mice have reduced levels of cysteine and GSH in the eye and develop cataracts. GGT-deficient mice raised under normal vivarium conditions, showed no cataractous changes at birth, but by 1 week they had developed nuclear opacities. By 3 weeks more severe cataracts develop, and lens GSH levels are approximately 6-7% of wild type levels. By 6-11 weeks cataracts show nuclear and cortical involvement, liquefaction and calcification. Single cell DNA electrophoresis (comet assay) demonstrated mild DNA damage in the lens epithelium. GGT-deficient mice raised in the dark beginning the day after conception all developed cataracts, but these were less severe than those in GGT-deficient mice raised with normal vivarium lighting. Administration of N -acetyl cysteine (NAC) raises lens GSH and almost completely prevents cataract development. Our data indicate that cataract development in GGT-deficient mice is multifactorial and results from exogenous damage (exposure to light), reduced lens GSH levels, and nutritional effects secondary to low cysteine levels.
Collapse