1
|
Zhang R, Tan Y, Xu K, Huang N, Wang J, Liu M, Wang L. Cuproplasia and cuproptosis in hepatocellular carcinoma: mechanisms, relationship and potential role in tumor microenvironment and treatment. Cancer Cell Int 2025; 25:137. [PMID: 40205387 PMCID: PMC11983883 DOI: 10.1186/s12935-025-03683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 02/08/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the main phenotype of liver cancer with a poor prognosis. Copper is vital in liver function, and HCC cells rely on it for growth and metastasis, leading to cuproplasia. Excessive copper can induce cell death, termed cuproptosis. Tumor microenvironment (TME) is pivotal in HCC, especially in immunotherapy, and copper is closely related to the TME pathogenesis. However, how these two mechanisms contribute to the TME is intriguing. MAIN BODY We conducted the latest progress literature on cuproplasia and cuproptosis in HCC, and summarized their specific roles in TME and treatment strategies. The mechanisms of cuproplasia and cuproptosis and their relationship and role in TME have been deeply summarized. Cuproplasia fosters TME formation, angiogenesis, and metastasis, whereas cuproptosis may alleviate mitochondrial dysfunction and hypoxic conditions in the TME. Inhibiting cuproplasia and enhancing cuproptosis in HCC are essential for achieving therapeutic efficacy in HCC. CONCLUSION An in-depth analysis of cuproplasia and cuproptosis mechanisms within the TME of HCC unveils their opposing nature and their impact on copper regulation. Grasping the equilibrium between these two factors is crucial for a deeper understanding of HCC mechanisms to shed light on novel directions in treating HCC.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China
| | - Yunfei Tan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Unit III, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ke Xu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China
| | - Ning Huang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China
| | - Jian Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, P.O. Box 2258, 100021, Beijing, People's Republic of China.
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
2
|
Ma YL, Yang YF, Wang HC, Yang CC, Yan LJ, Ding ZN, Tian BW, Liu H, Xue JS, Han CL, Tan SY, Hong JG, Yan YC, Mao XC, Wang DX, Li T. A novel prognostic scoring model based on copper homeostasis and cuproptosis which indicates changes in tumor microenvironment and affects treatment response. Front Pharmacol 2023; 14:1101749. [PMID: 36909185 PMCID: PMC9998499 DOI: 10.3389/fphar.2023.1101749] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Intracellular copper homeostasis requires a complex system. It has shown considerable prospects for intervening in the tumor microenvironment (TME) by regulating copper homeostasis and provoking cuproptosis. Their relationship with hepatocellular carcinoma (HCC) remains elusive. Methods: In TCGA and ICGC datasets, LASSO and multivariate Cox regression were applied to obtain the signature on the basis of genes associated with copper homeostasis and cuproptosis. Bioinformatic tools were utilized to reveal if the signature was correlated with HCC characteristics. Single-cell RNA sequencing data analysis identified differences in tumor and T cells' pathway activity and intercellular communication of immune-related cells. Real-time qPCR analysis was conducted to measure the genes' expression in HCC and adjacent normal tissue from 21 patients. CCK8 assay, scratch assay, transwell, and colony formation were conducted to reveal the effect of genes on in vitro cell proliferation, invasion, migration, and colony formation. Results: We constructed a five-gene scoring system in relation to copper homeostasis and cuproptosis. The high-risk score indicated poor clinical prognosis, enhanced tumor malignancy, and immune-suppressive tumor microenvironment. The T cell activity was markedly reduced in high-risk single-cell samples. The high-risk HCC patients had a better expectation of ICB response and reactivity to anti-PD-1 therapy. A total of 156 drugs were identified as potential signature-related drugs for HCC treatment, and most were sensitive to high-risk patients. Novel ligand-receptor pairs such as FASLG, CCL, CD40, IL2, and IFN-Ⅱ signaling pathways were revealed as cellular communication bridges, which may cause differences in TME and immune function. All crucial genes were differentially expressed between HCC and paired adjacent normal tissue. Model-constructed genes affected the phosphorylation of mTOR and AKT in both Huh7 and Hep3B cells. Knockdown of ZCRB1 impaired the proliferation, invasion, migration, and colony formation in HCC cell lines. Conclusion: We obtained a prognostic scoring system to forecast the TME changes and assist in choosing therapy strategies for HCC patients. In this study, we combined copper homeostasis and cuproptosis to show the overall potential risk of copper-related biological processes in HCC for the first time.
Collapse
Affiliation(s)
- Yun-Long Ma
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Ya-Fei Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Han-Chao Wang
- Institute for Financial Studies, Shandong University, Jinan, China
| | - Chun-Cheng Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Lun-Jie Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zi-Niu Ding
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Bao-Wen Tian
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Hui Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Jun-Shuai Xue
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Cheng-Long Han
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Si-Yu Tan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Jian-Guo Hong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Yu-Chuan Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Xin-Cheng Mao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Dong-Xu Wang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China.,Department of hepatobiliary surgery, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
3
|
Wang L, Wang D, Yang L, Zeng X, Zhang Q, Liu G, Pan Y. Cuproptosis related genes associated with Jab1 shapes tumor microenvironment and pharmacological profile in nasopharyngeal carcinoma. Front Immunol 2022; 13:989286. [PMID: 36618352 PMCID: PMC9816571 DOI: 10.3389/fimmu.2022.989286] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is the most common subcategory of head and neck squamous cell carcinoma (HNSCC). This study focused on the roles of cuproptosis related genes and Jab1 in the tumor microenvironment of NPC and HNSCC. METHODS Differential expression analysis of Jab1 and cuproptosis related genes in tumor cell enriched region (PanCK-expressing) and immune cell enriched region (CD45-expressing) of NPC microenvironment were performed by packages of R software. Survival analysis was performed using the survival and survminer packages. Corrplot package was used for correlation analysis. ConsensusClusterPlus package was used for cluster clustering among different regions of NPC, and functional enrichment analysis was performed using GSVA, GSEABase, clusterProfiler, org.Hs.eg.db and enrichplot packages. The pRRophetic package was used to predict drug sensitivity in NPC and HNSCC. RESULTS Relationships exist between cuproptosis related genes and Jab1 in the NPC microenvironment. The expression of cuproptosis related genes and Jab1 differed between tumor cell enriched region and immune cell enriched region. AKT inhibitor VIII, Doxorubicin, Bleomycin and Etoposide showed higher sensitivity to tumor cell than immune cell. In the high Jab1 group, higher expression of ATP7A, DBT, DLD and LIAS were associated with better prognosis of HNSCC patients. In contrast, in the low Jab1 group, higher expression of these genes is associated with worse prognosis of HNSCC patients. CONCLUSIONS Prognostic cuproptosis related genes and Jab1 provided a basis for targeted therapy and drug development.
Collapse
Affiliation(s)
- Liping Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Dujuan Wang
- Department of Clinical Pathology, Houjie Hospital of Dongguan, the Affiliated Houjie Hospital of Guangdong Medical University, Dongguan, China
| | - Liu Yang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Xiaojiao Zeng
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Qian Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Copper in tumors and the use of copper-based compounds in cancer treatment. J Inorg Biochem 2021; 226:111634. [PMID: 34740035 DOI: 10.1016/j.jinorgbio.2021.111634] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Copper homeostasis is strictly regulated by protein transporters and chaperones, to allow its correct distribution and avoid uncontrolled redox reactions. Several studies address copper as involved in cancer development and spreading (epithelial to mesenchymal transition, angiogenesis). However, being endogenous and displaying a tremendous potential to generate free radicals, copper is a perfect candidate, once opportunely complexed, to be used as a drug in cancer therapy with low adverse effects. Copper ions can be modulated by the organic counterpart, after complexed to their metalcore, either in redox potential or geometry and consequently reactivity. During the last four decades, many copper complexes were studied regarding their reactivity toward cancer cells, and many of them could be a drug choice for phase II and III in cancer therapy. Also, there is promising evidence of using 64Cu in nanoparticles as radiopharmaceuticals for both positron emission tomography (PET) imaging and treatment of hypoxic tumors. However, few compounds have gone beyond testing in animal models, and none of them got the status of a drug for cancer chemotherapy. The main challenge is their solubility in physiological buffers and their different and non-predictable mechanism of action. Moreover, it is difficult to rationalize a structure-based activity for drug design and delivery. In this review, we describe the role of copper in cancer, the effects of copper-complexes on tumor cell death mechanisms, and point to the new copper complexes applicable as drugs, suggesting that they may represent at least one component of a multi-action combination in cancer therapy.
Collapse
|
5
|
Babak MV, Ahn D. Modulation of Intracellular Copper Levels as the Mechanism of Action of Anticancer Copper Complexes: Clinical Relevance. Biomedicines 2021; 9:biomedicines9080852. [PMID: 34440056 PMCID: PMC8389626 DOI: 10.3390/biomedicines9080852] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/29/2022] Open
Abstract
Copper (Cu) is a vital element required for cellular growth and development; however, even slight changes in its homeostasis might lead to severe toxicity and deleterious medical conditions. Cancer patients are typically associated with higher Cu content in serum and tumor tissues, indicating increased demand of cancer cells for this micronutrient. Cu is known to readily cycle between the +1 and +2 oxidation state in biological systems. The mechanism of action of Cu complexes is typically based on their redox activity and induction of reactive oxygen species (ROS), leading to deadly oxidative stress. However, there are a number of other biomolecular mechanisms beyond ROS generation that contribute to the activity of anticancer Cu drug candidates. In this review, we discuss how interfering with intracellular Cu balance via either diet modification or addition of inorganic Cu supplements or Cu-modulating compounds affects tumor development, progression, and sensitivity to treatment modalities. We aim to provide the rationale for the use of Cu-depleting and Cu-overloading conditions to generate the best possible patient outcome with minimal toxicity. We also discuss the advantages of the use of pre-formed Cu complexes, such as Cu-(bis)thiosemicarbazones or Cu-N-heterocyclic thiosemicarbazones, in comparison with the in situ formed Cu complexes with metal-binding ligands. In this review, we summarize available clinical and mechanistic data on clinically relevant anticancer drug candidates, including Cu supplements, Cu chelators, Cu ionophores, and Cu complexes.
Collapse
|
6
|
Hasegawa A, Shimizu R. GATA1 Activity Governed by Configurations of cis-Acting Elements. Front Oncol 2017; 6:269. [PMID: 28119852 PMCID: PMC5220053 DOI: 10.3389/fonc.2016.00269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/19/2016] [Indexed: 01/19/2023] Open
Abstract
The transcription factor GATA1 regulates the expression of essential erythroid and megakaryocytic differentiation genes through binding to the DNA consensus sequence WGATAR. The GATA1 protein has four functional domains, including two centrally located zinc-finger domains and two transactivation domains at the N- and C-termini. These functional domains play characteristic roles in the elaborate regulation of diversified GATA1 target genes, each of which exhibits a unique expression profile. Three types of GATA1-related hematological malignancies have been reported. One is a structural mutation in the GATA1 gene, resulting in the production of a short form of GATA1 that lacks the N-terminal transactivation domain and is found in Down syndrome-related acute megakaryocytic leukemia. The other two are cis-acting regulatory mutations affecting expression of the Gata1 gene, which have been shown to cause acute erythroblastic leukemia and myelofibrosis in mice. Therefore, imbalanced gene regulation caused by qualitative and quantitative changes in GATA1 is thought to be involved in specific hematological disease pathogenesis. In the present review, we discuss recent advances in understanding the mechanisms of differential transcriptional regulation by GATA1 during erythroid differentiation, with special reference to the binding kinetics of GATA1 at conformation-specific binding sites.
Collapse
Affiliation(s)
- Atsushi Hasegawa
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ritsuko Shimizu
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan; Medical Mega-Bank Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
7
|
Lin YS, Lin LC, Lin SW. Effects of zinc supplementation on the survival of patients who received concomitant chemotherapy and radiotherapy for advanced nasopharyngeal carcinoma: follow-up of a double-blind randomized study with subgroup analysis. Laryngoscope 2009; 119:1348-52. [PMID: 19402154 DOI: 10.1002/lary.20524] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES/HYPOTHESIS Dietary zinc has been reported to have positive effects on treating carcinoma. This study examined the effects of zinc supplementation on the improved survival of patients with advanced nasopharyngeal carcinoma receiving concomitant chemotherapy and radiotherapy (CCRT). STUDY DESIGN A double-blind, placebo-controlled clinical study with subgroup analysis. METHODS Thirty-four patients with stages III and IV nasopharyngeal carcinoma were selected from a double-blind, placebo-controlled clinical study. All the patients were randomized to receive a standard dose (75 mg/day for 2 months) of zinc supplements or placebo, in conjunction with CCRT. The overall local recurrence, metastasis, and disease-free survivals were defined as the period between the time of first treatment to the time of death, local recurrence, or distant metastases occurred. RESULTS Patients in the experimental group exhibited a higher 5-year overall local-free and disease-free survival rate than the patients in the placebo group (P = .044, P = .007, and P = .033, respectively). However, no significant differences were found between both patient groups for the 5-year metastases-free survival rate (P = .149). CONCLUSIONS Zinc supplementation prescribed in conjunction with CCRT effects attenuating local tumor recurrence and improves the overall survival of patients with advanced nasopharyngeal carcinoma. The failure to reduce distant metastasis survival might have been related in part to the more advanced disease stages in our patients.
Collapse
Affiliation(s)
- Yung-Song Lin
- Department of Otolaryngology, Taipei Medical University, Chi Mei Medical Center, Yung Kan City, Tainan County, Taiwan.
| | | | | |
Collapse
|
8
|
Ertekin MV, Koç M, Karslioğlu I, Sezen O, Taysi S, Bakan N. The effects of oral zinc sulphate during radiotherapy on anti-oxidant enzyme activities in patients with head and neck cancer: a prospective, randomised, placebo-controlled study. Int J Clin Pract 2004; 58:662-8. [PMID: 15311722 DOI: 10.1111/j.1368-5031.2004.00006.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The purpose was to determine the effects of oral zinc sulphate along with radiotherapy on anti-oxidant enzyme activities in patients with head and neck cancer. Thirty patients with head and neck cancer were randomly assigned to receive either zinc sulphate capsules (including 50 mg zinc) (n = 15) or placebo (n = 15) three times a day, starting on the day of the first radiotherapy fraction and continuing throughout the scheduled radiotherapy course including weekends and 6 weeks after radiotherapy. The patients were treated with telecobalt radiation at conventional fractionation of 2 Gy/fraction and five fractions/ week in 20-35 fractions for a period of 4-7 weeks. Blood samples for biochemical parameters were collected after an overnight fast (12 h) before radiotherapy, the first day and 6 weeks after radiotherapy. In the placebo group, three patients were excluded. No difference was detected in any final measurement activities of erythrocyte anti-oxidant enzyme such as copper-zinc superoxide dismutase (Cu-Zn SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in the direct comparison between the zinc sulphate and the placebo group, except erythrocyte SOD activities measured the first day after radiotherapy (p < 0.03). In the respective measurement analysis of the groups in themselves, in the zinc sulphate group, while the statistical analysis for the activities of erythrocyte CAT and GSH-Px were significantly different (chi2 = 12.4, p < 0.05; chi2 = 8.9, p < 0.05, respectively) before radiotherapy, the first day and 6 weeks after radiotherapy, the activities of SOD did not differ (chi2 = 4.2, p > 0.05). In these three measurements, there was no statistical significance in the activities of enzymes in erythrocyte Cu-Zn SOD, CAT and GSH-Px in the placebo group. Before radiotherapy, plasma zinc levels were normal in 16 patients (59.2%) and were lower in 11 patients (40.8%) compared with laboratory levels. It would be worthwhile studying the effect of oral zinc sulphate supplements to improve the anti-oxidant enzyme activity in radiation-treated cancer patients, in the hope of reducing radiation-induced toxicity.
Collapse
Affiliation(s)
- M V Ertekin
- Department of Radiation Oncology, Atatürk University Medical Faculty, Erzurum, Turkey.
| | | | | | | | | | | |
Collapse
|
9
|
Leung PL, Huang HM. Analysis of trace elements in the hair of volunteers suffering from naso-pharyngeal cancer. Biol Trace Elem Res 1997; 57:19-25. [PMID: 9258465 DOI: 10.1007/bf02803866] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This article describes a study where the trace elements (TEs) of four groups of volunteers were analyzed. The volunteers were divided into four groups A, B, C, and D. Group A was made up of healthy subjects, group B was made up of volunteers who had just been diagnosed as having naso-pharyngeal cancer (NPC), group C was made up of volunteers who had been diagnosed as having NPC after 3 mo of treatment, and group D was made up of volunteers who had been diagnosed as having NPC after 6 mo of treatment. In all groups, 11 trace elements in hair were analyzed. Our study shows that the concentrations of zinc (Zn), copper (Cu), manganese (Mn), and cobalt (Co) in group B are less than that of group A, whereas the concentration of titanium (Ti) in group B is higher. Our results also show that the difference in the level of TEs between group A and the other groups is dramatically decreased as the time of the treatment is increased. This may be a reflection of successful treatment.
Collapse
Affiliation(s)
- P L Leung
- Department of Physics and Materials Science, City University of Hong Kong, P. R. China
| | | |
Collapse
|
10
|
Lin PS, Ho KC. New cytotoxic mechanism of the bioreductive agent Tirapazamine (SR 4233) mediated by forming complex with copper. ACTA ACUST UNITED AC 1996. [DOI: 10.1002/(sici)1520-6823(1996)4:5<211::aid-roi3>3.0.co;2-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|