Abstract
The afferent innervation pattern of inner hair cells in the apex of the guinea pig cochlea was studied using serial reconstruction of semithick (0.25-micron) sections and high-voltage electron microscopy (HVEM). This thickness produced a good compromise between the ability to resolve details of the synaptic contacts between the hair cells and sensory neurons and the number of sections required to reconstruct the nerve terminals within the receptor organ. The use of a goniometer allowed the sections to be tilted to angles optimum for viewing either the synaptic membrane specializations or the presynaptic bodies. Reasonably good images of 0.25-micron sections could be obtained using a conventional 120-keV microscope, but the images produced by the HVEM were clearly superior. The sensory nerve terminals and hair cells were reconstructed using a microcomputer-based computer-aided-design system. Nerve terminals with complex shapes could be successfully rendered as surface models viewed as stereo pairs. The advantages and limitations of the techniques used are discussed.
Collapse