1
|
Baenas N, Wagner AE. Drosophila melanogaster as an alternative model organism in nutrigenomics. GENES AND NUTRITION 2019; 14:14. [PMID: 31080523 PMCID: PMC6501408 DOI: 10.1186/s12263-019-0641-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022]
Abstract
Nutrigenomics explains the interaction between the genome, the proteome, the epigenome, the metabolome, and the microbiome with the nutritional environment of an organism. It is therefore situated at the interface between an organism's health, its diet, and the genome. The diet and/or specific dietary compounds are able to affect not only the gene expression patterns, but also the epigenetic mechanisms as well as the production of metabolites and the bacterial composition of the microbiota. Drosophila melanogaster provides a well-suited model organism to unravel these interactions in the context of nutrigenomics as it combines several advantages including an affordable maintenance, a short generation time, a high fecundity, a relatively short life expectancy, a well-characterized genome, and the availability of several mutant fly lines. Furthermore, it hosts a mammalian-like intestinal system with a clear microbiota and a fat body resembling the adipose tissue with liver-equivalent oenocytes, supporting the fly as an excellent model organism not only in nutrigenomics but also in nutritional research. Experimental approaches that are essentially needed in nutrigenomic research, including several sequencing technologies, have already been established in the fruit fly. However, studies investigating the interaction of a specific diet and/or dietary compounds in the fly are currently very limited. The present review provides an overview of the fly's morphology including the intestinal microbiome and antimicrobial peptides as modulators of the immune system. Additionally, it summarizes nutrigenomic approaches in the fruit fly helping to elucidate host-genome interactions with the nutritional environment in the model organism Drosophila melanogaster.
Collapse
Affiliation(s)
- Nieves Baenas
- 1Institute of Nutritional Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Anika E Wagner
- 2Institute of Nutritional Sciences, Justus-Liebig-University, Wilhelmstrasse 20, 35392 Giessen, Germany
| |
Collapse
|
2
|
Cázarez-García D, Ramírez Loustalot-Laclette M, Ann Markow T, Winkler R. Lipidomic profiles of Drosophila melanogaster and cactophilic fly species: models of human metabolic diseases. Integr Biol (Camb) 2017; 9:885-891. [DOI: 10.1039/c7ib00155j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Untargeted metabolomics, combined with data mining, reveals different sensibility of fly species against diet changes.
Collapse
Affiliation(s)
- Daniel Cázarez-García
- CINVESTAV Unidad Irapuato
- Department of Biochemistry and Biotechnology
- 36821 Irapuato Gto
- Mexico
| | | | - Therese Ann Markow
- Unidad de Genómica Avanzada (UGA) – Laboratorio Nacional de Genómica (LANGEBIO)
- 36821 Irapuato Gto
- Mexico
| | - Robert Winkler
- CINVESTAV Unidad Irapuato
- Department of Biochemistry and Biotechnology
- 36821 Irapuato Gto
- Mexico
| |
Collapse
|
3
|
Hazegh KE, Reis T. A Buoyancy-based Method of Determining Fat Levels in Drosophila. J Vis Exp 2016. [PMID: 27842367 DOI: 10.3791/54744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Drosophila melanogaster is a key experimental system in the study of fat regulation. Numerous techniques currently exist to measure levels of stored fat in Drosophila, but most are expensive and/or laborious and have clear limitations. Here, we present a method to quickly and cheaply determine organismal fat levels in L3 Drosophila larvae. The technique relies on the differences in density between fat and lean tissues and allows for rapid detection of fat and lean phenotypes. We have verified the accuracy of this method by comparison to body fat percentage as determined by neutral lipid extraction and gas chromatography coupled with mass spectrometry (GCMS). We furthermore outline detailed protocols for the collection and synchronization of larvae as well as relevant experimental recipes. The technique presented below overcomes the major shortcomings in the most widely used lipid quantitation methods and provides a powerful way to quickly and sensitively screen L3 larvae for fat regulation phenotypes while maintaining the integrity of the larvae. This assay has wide applications for the study of metabolism and fat regulation using Drosophila.
Collapse
Affiliation(s)
- Kelsey E Hazegh
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus
| | - Tânia Reis
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus;
| |
Collapse
|
4
|
Wagner AE, Piegholdt S, Rabe D, Baenas N, Schloesser A, Eggersdorfer M, Stocker A, Rimbach G. Epigallocatechin gallate affects glucose metabolism and increases fitness and lifespan in Drosophila melanogaster. Oncotarget 2016; 6:30568-78. [PMID: 26375250 PMCID: PMC4741552 DOI: 10.18632/oncotarget.5215] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/28/2015] [Indexed: 11/25/2022] Open
Abstract
In this study, we tested whether a standardized epigallocatechin-3-gallate (EGCG) rich green tea extract (comprising > 90% EGCG) affects fitness and lifespan as well as parameters of glucose metabolism and energy homeostasis in the fruit fly, Drosophila melanogaster. Following the application of the green tea extract a significant increase in the mean lifespan (+ 3.3 days) and the 50% survival (+ 4.3 days) as well as improved fitness was detected. These effects went along an increased expression of Spargel, the homolog of mammalian PGC1α, which has been reported to affect lifespan in flies. Intriguingly, in flies, treatment with the green tea extract decreased glucose concentrations, which were accompanied by an inhibition of α-amylase and α-glucosidase activity. Computational docking analysis proved the potential of EGCG to dock into the substrate binding pocket of α-amylase and to a greater extent into α-glucosidase. Furthermore, we demonstrate that EGCG downregulates insulin-like peptide 5 and phosphoenolpyruvate carboxykinase, major regulators of glucose metabolism, as well as the Drosophila homolog of leptin, unpaired 2. We propose that a decrease in glucose metabolism in connection with an upregulated expression of Spargel contribute to the better fitness and the extended lifespan in EGCG-treated flies.
Collapse
Affiliation(s)
- Anika E Wagner
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Stefanie Piegholdt
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Doerte Rabe
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Nieves Baenas
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany.,Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - Anke Schloesser
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | | | - Achim Stocker
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| |
Collapse
|
5
|
Dietary intake of Curcuma longa and Emblica officinalis increases life span in Drosophila melanogaster. BIOMED RESEARCH INTERNATIONAL 2014; 2014:910290. [PMID: 24967413 PMCID: PMC4054679 DOI: 10.1155/2014/910290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/01/2014] [Indexed: 01/27/2023]
Abstract
Intake of food and nutrition plays a major role in affecting aging process and longevity. However, the precise mechanisms underlying the ageing process are still unclear. To this respect, diet has been considered to be a determinant of ageing process. In order to better illustrate this, we used Drosophila melanogaster as a model and fed them orally with different concentrations of two commonly used Indian medicinal plant products, Curcuma longa (rhizome) and Emblica officinalis (fruit). The results revealed significant increase in life span of Drosophila flies on exposure to both the plant products, more efficiently by C. Longa than by E. officinalis. In order to understand whether the increase in lifespan was due to high-antioxidant properties of these medicinal plants, we performed enzymatic assays to assess the SOD and catalase activities in case of both treated and control Drosophila flies. Interestingly, the results support the free radical theory of aging as both these plant derivatives show high reactive oxygen species (ROS) scavenging activities.
Collapse
|
6
|
Drosophila as a model to study metabolic disorders. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 135:41-61. [PMID: 23604212 DOI: 10.1007/10_2013_196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Shen LR, Lai CQ, Feng X, Parnell LD, Wan JB, Wang JD, Li D, Ordovas JM, Kang JX. Drosophila lacks C20 and C22 PUFAs. J Lipid Res 2010; 51:2985-92. [PMID: 20656917 DOI: 10.1194/jlr.m008524] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Drosophila melanogaster has been considered a model organism for investigating human diseases and genetic pathways. Whether Drosophila is an ideal model for nutrigenomics, especially for FA metabolism, however, remains to be illustrated. The aim of this study was to examine the metabolism of C20 and C22 PUFAs in Drosophila. Analysis of FA composition revealed a complete lack of C20 and C22 PUFAs in the body tissue of larvae, pupae, and adult flies fed either a base or supplemented diet abundant in the PUFA precursors linoleic acid and α-linolenic acid. PUFA with >C20 could only be found in flies supplemented with specific FAs. Interestingly, the supplemented C22 PUFAs docosahexaenoic acid (22:6n-3) and docosatetraenoic acid (22:4n-6) were largely converted to the shorter chain C20 PUFAs eicosapentaenoic acid (20:5n-3) and arachidonic acid (20:4n-6), respectively. Furthermore, a genome sequence scan indicated that no gene encoding Δ-6/ Δ-5 desaturases, the key enzymes for the synthesis of C20/C22 PUFA, was present in Drosophila. These findings demonstrate that Drosophila lacks the capability to synthesize the biologically important C20 and C22 PUFAs, and thereby argue that Drosophila is not a valid model for the study of lipid metabolism and related diseases.
Collapse
Affiliation(s)
- Li Rong Shen
- Department of Food Science & Nutrition, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Pb2+: an endocrine disruptor in Drosophila? Physiol Behav 2009; 99:254-9. [PMID: 19800356 DOI: 10.1016/j.physbeh.2009.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 09/10/2009] [Accepted: 09/17/2009] [Indexed: 11/24/2022]
Abstract
Environmental exposure to Pb(2+) affects hormone-mediated responses in vertebrates. To help establish the fruit fly, Drosophila melanogaster, as a model system for studying such disruption, we describe effects of Pb(2+) on hormonally regulated traits. These include duration of development, longevity, females' willingness to mate, fecundity and adult locomotor activity. Developmental Pb(2+) exposure has been shown to affect gene expression in a specific region of the Drosophila genome (approximately 122 genes) involved in lead-induced changes in adult locomotion and to affect regulation of intracellular calcium levels associated with neuronal activity at identified synapses in the larval neuromuscular junction. We suggest ways in which Drosophila could become a new model system for the study of endocrine disruptors at genetic, neural and behavioral levels of analysis, particularly by use of genomic methods. This will facilitate efforts to distinguish between behavioral effects of Pb(2+) caused by direct action on neural mechanisms versus effects of Pb(+2) on behavior mediated through endocrine disruption.
Collapse
|
9
|
Daniel H, Drevon CA, Klein UI, Kleemann R, van Ommen B. The challenges for molecular nutrition research 3: comparative nutrigenomics research as a basis for entering the systems level. GENES AND NUTRITION 2008; 3:101-6. [PMID: 18830658 DOI: 10.1007/s12263-008-0089-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Accepted: 09/08/2008] [Indexed: 11/29/2022]
Abstract
Human nutrition and metabolism may serve as the paradigm for the complex interplay of the genome with its environment. The concept of nutrigenomics now enables science with new tools and comprehensive analytical techniques to investigate this interaction at all levels of the complexity of the organism. Moreover, nutrigenomics seeks to better define the homeostatic control mechanisms, identify the de-regulation in the early phases of diet-related diseases, and attempts to assess to what extent an individual's sensitizing genotype contributes to the overall health or disease state. In a comparative approach nutrigenomics uses biological systems of increasing complexity from yeast to mammalian models to define the general rules of metabolic and genetic mechanisms in adaptations to the nutritional environment. Powerful information technology, bioinformatics and knowledge management tools as well as new mathematical and computational approaches now make it possible to study these molecular mechanisms at the cellular, organ and whole organism level and take it on to modeling the processes in a "systems biology" approach. This review summarizes some of the concepts of a comparative approach to nutrigenomics research, identifies current lacks and proposes a concerted scientific effort to create the basis for nutritional systems biology.
Collapse
Affiliation(s)
- Hannelore Daniel
- Molecular Nutrition Unit, Nutrition and Food Research Center, Technische Universität München, Freising, Germany,
| | | | | | | | | |
Collapse
|