1
|
Aphid Transmission of Potyvirus: The Largest Plant-Infecting RNA Virus Genus. Viruses 2020; 12:v12070773. [PMID: 32708998 PMCID: PMC7411817 DOI: 10.3390/v12070773] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Potyviruses are the largest group of plant infecting RNA viruses that cause significant losses in a wide range of crops across the globe. The majority of viruses in the genus Potyvirus are transmitted by aphids in a non-persistent, non-circulative manner and have been extensively studied vis-à-vis their structure, taxonomy, evolution, diagnosis, transmission, and molecular interactions with hosts. This comprehensive review exclusively discusses potyviruses and their transmission by aphid vectors, specifically in the light of several virus, aphid and plant factors, and how their interplay influences potyviral binding in aphids, aphid behavior and fitness, host plant biochemistry, virus epidemics, and transmission bottlenecks. We present the heatmap of the global distribution of potyvirus species, variation in the potyviral coat protein gene, and top aphid vectors of potyviruses. Lastly, we examine how the fundamental understanding of these multi-partite interactions through multi-omics approaches is already contributing to, and can have future implications for, devising effective and sustainable management strategies against aphid-transmitted potyviruses to global agriculture.
Collapse
|
2
|
Abstract
Transgenic resistance to plant viruses is an important technology for control of plant virus infection, which has been demonstrated for many model systems, as well as for the most important plant viruses, in terms of the costs of crop losses to disease, and also for many other plant viruses infecting various fruits and vegetables. Different approaches have been used over the last 28 years to confer resistance, to ascertain whether particular genes or RNAs are more efficient at generating resistance, and to take advantage of advances in the biology of RNA interference to generate more efficient and environmentally safer, novel "resistance genes." The approaches used have been based on expression of various viral proteins (mostly capsid protein but also replicase proteins, movement proteins, and to a much lesser extent, other viral proteins), RNAs [sense RNAs (translatable or not), antisense RNAs, satellite RNAs, defective-interfering RNAs, hairpin RNAs, and artificial microRNAs], nonviral genes (nucleases, antiviral inhibitors, and plantibodies), and host-derived resistance genes (dominant resistance genes and recessive resistance genes), and various factors involved in host defense responses. This review examines the above range of approaches used, the viruses that were tested, and the host species that have been examined for resistance, in many cases describing differences in results that were obtained for various systems developed in the last 20 years. We hope this compilation of experiences will aid those who are seeking to use this technology to provide resistance in yet other crops, where nature has not provided such.
Collapse
Affiliation(s)
| | - Peter Palukaitis
- Department of Horticultural Sciences, Seoul Women's University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Bravo-Almonacid F, Rudoy V, Welin B, Segretin ME, Bedogni MC, Stolowicz F, Criscuolo M, Foti M, Gomez M, López M, Serino G, Cabral S, Dos Santos C, Huarte M, Mentaberry A. Field testing, gene flow assessment and pre-commercial studies on transgenic Solanum tuberosum spp. tuberosum (cv. Spunta) selected for PVY resistance in Argentina. Transgenic Res 2011; 21:967-82. [PMID: 22200984 DOI: 10.1007/s11248-011-9584-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 12/16/2011] [Indexed: 11/25/2022]
Abstract
Solanum tuberosum ssp. tuberosum (cv. Spunta) was transformed with a chimeric transgene containing the Potato virus Y (PVY) coat protein (CP) sequence. Screening for PVY resistance under greenhouse conditions yielded over 100 independent candidate lines. Successive field testing of selected lines allowed the identification of two genetically stable PVY-resistant lines, SY230 and SY233, which were further evaluated in field trials at different potato-producing regions in Argentina. In total, more than 2,000 individuals from each line were tested along a 6-year period. While no or negligible PVY infection was observed in the transgenic lines, infection rates of control plants were consistently high and reached levels of up to 70-80%. Parallel field studies were performed in virus-free environments to assess the agronomical performance of the selected lines. Tubers collected from these assays exhibited agronomical traits and biochemical compositions indistinguishable from those of the non-transformed Spunta cultivar. In addition, an interspecific out-crossing trial to determine the magnitude of possible natural gene flow between transgenic line SY233 and its wild relative Solanum chacoense was performed. This trial yielded negative results, suggesting an extremely low probability for such an event to occur.
Collapse
Affiliation(s)
- Fernando Bravo-Almonacid
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (CONICET), Vuelta de Obligado 2490 (C1428ADN), Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Arif M, Azhar U, Arshad M, Zafar Y, Mansoor S, Asad S. Engineering broad-spectrum resistance against RNA viruses in potato. Transgenic Res 2011; 21:303-11. [PMID: 21701953 DOI: 10.1007/s11248-011-9533-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 06/15/2011] [Indexed: 10/18/2022]
Abstract
RNA silencing technology has become the tool of choice for inducing resistance against viruses in plants. A significant discovery of this technology is that double-stranded RNA (dsRNA), which is diced into small interfering RNAs (siRNAs), is a potent trigger for RNA silencing. By exploiting this phenomenon in transgenic plants, it is possible to confer high level of virus resistance by specific targeting of cognate viral RNA. In order to maximize the efficiency and versatility of the vector-based siRNA approach, we have constructed a chimeric expression vector containing three partial gene sequences derived from the ORF2 gene of Potato virus X, Helper Component Protease gene of Potato virus Y and Coat protein gene of Potato leaf roll virus. Solanum tuberosum cv. Desiree and Kuroda were transformed with this chimeric gene cassette via Agrobacterium tumefaciens-mediated transformation and transgenic status was confirmed by PCR, Southern and double antibody sandwich ELISA detection. Due to simultaneous RNA silencing, as demonstrated by accumulation of specific siRNAs, the expression of partial triple-gene sequence cassette depicted 20% of the transgenic plants are immune against all three viruses. Thus, expression of a single transgene construct can effectively confer resistance to multiple viruses in transgenic plants.
Collapse
Affiliation(s)
- M Arif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | | | | | | | | | | |
Collapse
|
5
|
Rohozková J, Navrátil M. P1 peptidase--a mysterious protein of family Potyviridae. J Biosci 2011; 36:189-200. [PMID: 21451259 DOI: 10.1007/s12038-011-9020-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 02/10/2011] [Indexed: 10/18/2022]
Abstract
The Potyviridae family, named after its type member, Potato virus Y (PVY), is the largest of the 65 plant virus groups and families currently recognized. The coding region for P1 peptidase is located at the very beginning of the viral genome of the family Potyviridae. Until recently P1 was thought of as serine peptidase with RNA-binding activity and with possible influence in cell-to-cell viral spreading. This N-terminal protein, among all of the potyviruses, is the most divergent protein: varying in length and in its amino acid sequence. Nevertheless, P1 peptidase in many ways is still a mysterious viral protein. In this review, we would like to offer a comprehensive overview, discussing the proteomic, biochemical and phylogenetic views of the P1 protein.
Collapse
Affiliation(s)
- Jana Rohozková
- Faculty of Science, Palacký University in Olomouc, Slechtitelů 11, 783 71, Olomouc-Holice, Czech Republic.
| | | |
Collapse
|
6
|
Germundsson A, Savenkov EI, Ala-Poikela M, Valkonen JPT. VPg of Potato virus A alone does not suppress RNA silencing but affects virulence of a heterologous virus. Virus Genes 2007; 34:387-99. [PMID: 16927117 DOI: 10.1007/s11262-006-0030-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 07/20/2006] [Indexed: 10/24/2022]
Abstract
The viral genome-linked protein (VPg) is a well-known virulence factor in potyviruses (genus Potyvirus), including Potato virus A (PVA). Its ability to suppress onset and signalling of transgene-mediated RNA silencing and accumulation of small interfering RNA (siRNA) was studied using cross-protection and Agrobacterium infiltration assays and green fluorescent protein (GFP) and PVA VPg protein-expressing transgenic Nicotiana benthamiana plants. N. benthamiana plants were also transformed with a transgene comprising the cylindrical inclusion protein (CI), nuclear inclusion protein a (NIa) and coat protein (CP) encoding regions of PVA. This transgene mRNA was expressed in the T1 progeny of the transgenic lines but all were susceptible to PVA. This result contrasted the plants transformed with the PVA P1, VPg (N-proximal part of NIa) or CP encoding regions that expressed various forms of resistance. There was little evidence for direct involvement of VPg in suppression of silencing, while other mechanisms by which VPg might interfere with transgenic resistance could not be excluded. Expression of the wild-type PVA VPg from the genome of Potato virus X (PVX, genus Potexvirus) increased symptom severity in N. benthamiana, whereas a single point mutation introduced to the VPg enhanced accumulation of the PVX chimera. These data demonstrated previously unknown virulence functions controlled by the VPg of a potyvirus.
Collapse
Affiliation(s)
- Anna Germundsson
- Department of Plant Biology and Forest Genetics, SLU, Box 7080, SE-750 07 Uppsala, Sweden
| | | | | | | |
Collapse
|
7
|
Germundsson A, Valkonen JPT. P1- and VPg-transgenic plants show similar resistance to Potato virus A and may compromise long distance movement of the virus in plant sections expressing RNA silencing-based resistance. Virus Res 2006; 116:208-13. [PMID: 16298007 DOI: 10.1016/j.virusres.2005.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 10/20/2005] [Accepted: 10/20/2005] [Indexed: 10/25/2022]
Abstract
Nicotiana benthamiana was transformed with P1 or VPg cistron of Potato virus A (PVA, genus Potyvirus). For both transgenes, T1 progeny displayed (i) resistance to PVA infection, (ii) susceptibility, or (iii) systemic infection followed by recovery of new leaves from PVA infection (RC), regardless of the transgene. In RC plants, fully recovered leaves contained no detectable PVA RNA, were highly resistant to challenge inoculation with PVA, and had barely detectable steady-state levels of transgene mRNA; transgene-homologous siRNA was not detected, in contrast to leaves undergoing recovery. Tops in RC plants and PVA-susceptible transgenic plants were replaced with scions from wild-type plants; only scions on the latter became PVA-infected. These findings suggest that vascular movement of PVA from lower, infected parts of RC plants was compromised in the recovered section expressing RNA silencing-based resistance, which adds a novel dimension to the current models for potyvirus movement.
Collapse
Affiliation(s)
- Anna Germundsson
- Department of Plant Biology and Forest Genetics, SLU, Box 7080, SE-750 07 Uppsala, Sweden
| | | |
Collapse
|
8
|
Mäki-Valkama T, Valkonen JP, Kreuze JF, Pehu E. Transgenic resistance to PVY(O) associated with post-transcriptional silencing of P1 transgene is overcome by PVY(N) strains that carry highly homologous P1 sequences and recover transgene expression at infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:366-373. [PMID: 10755299 DOI: 10.1094/mpmi.2000.13.4.366] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Resistance to Potato virus Y (PVY) has been obtained in our previous studies through expression of the PVY P1 gene in sense or antisense orientation in potato cv. Pito. In the present study, the mechanism and strain specificity of the resistance were analyzed. Several features including low steady-state P1 mRNA expression in the resistant P1 plants indicated that resistance was based on post-transcriptional gene silencing (PTGS). Resistance was specific to PVY(O) isolates, the PVY strain group from which the P1 transgene was derived. However, according to group analyses, there was no distinguishing characteristic between the PVY(O) and PVY(N) strains P1 gene sequences. Therefore, the ability of the PVY(N) strains to overcome resistance could not be explained solely based on their P1 gene sequences. Infection with PVY(N) of the PVY(O)-resistant transgenic lines led to a recovery of expression of the P1 transgene. These data suggested that factors other than sequence homology are required in determination of the resistance specificity.
Collapse
MESH Headings
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Gene Expression Regulation, Viral
- Gene Silencing
- Immunity, Innate
- Plant Diseases/virology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/virology
- Potyvirus/genetics
- Potyvirus/metabolism
- Potyvirus/pathogenicity
- RNA Processing, Post-Transcriptional
- RNA, Messenger/metabolism
- Sequence Homology, Nucleic Acid
- Solanum tuberosum/virology
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- T Mäki-Valkama
- Department of Plant Production, University of Helsinki, Finland.
| | | | | | | |
Collapse
|
9
|
Hammond J, Lecoq H, Raccah B. Epidemiological risks from mixed virus infections and transgenic plants expressing viral genes. Adv Virus Res 1999; 54:189-314. [PMID: 10547677 DOI: 10.1016/s0065-3527(08)60368-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- J Hammond
- USDA-ARS, U.S. National Arboretum, Floral and Nursery Plants Research Unit, Beltsville, Maryland 20705, USA
| | | | | |
Collapse
|
10
|
Valkonen JP, Rokka VM, Watanabe KN. Examination of the leaf-drop symptom of virus-infected potato using anther culture-derived haploids. PHYTOPATHOLOGY 1998; 88:1073-1077. [PMID: 18944819 DOI: 10.1094/phyto.1998.88.10.1073] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Necrotic lesions and vein necrosis characteristic of the hypersensitive response (HR) controlled by the dominant resistance gene Ny develop in potato cv. Pito after infection with potato virus Y ordinary strain (PVY masculine) at a low temperature (16/18 degrees C night/day). In contrast, at high temperatures (19/24 degrees C night/day), large coalesced lesions develop in the lower infected leaves, which wither and remain hanging from stems forming the leaf-drop symptom; mosaic symptoms with no necrosis also develop in the top leaves. The genetic basis of the leaf-drop symptom and its dependence on temperature were examined using a novel approach involving 58 haploids (2n = 24) derived from 'Pito' (2n = 48) through anther culture. These haploids and 'Pito' were graft-inoculated with PVY(O) at 19/24 to 25 degrees C (night/day). Necrotic symptoms were expressed in 28 haploids, of which 18 haploids (phenotype class N) developed top necrosis, vein necrosis, or both and necrotic lesions that are characteristic of HR. Ten haploids showed leaf drop similar to 'Pito' (phenotype class LD). Thirty haploids were susceptible and showed only mosaic symptoms (phenotype class S). These data indicated that necrosis was induced by a single dominant gene, Ny, in the simplex condition. However, the three distinct phenotypic classes (N, LD, and S) among the haploids grown under the same environmental conditions showed that another locus (gene) was involved in modifying the HR triggered by Ny. Data suggested that this locus contains a dominant temperature-dependent modifier (Tdm) gene that alters the expression of PVY-induced HR at higher temperatures, resulting in leaf drop.
Collapse
|
11
|
Guo HS, Cervera MT, García JA. Plum pox potyvirus resistance associated to transgene silencing that can be stabilized after different number of plant generations. Gene 1998; 206:263-72. [PMID: 9469941 DOI: 10.1016/s0378-1119(97)00595-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nicotiana benthamiana plants were transformed with a fragment of the plum pox potyvirus (PPV) genome that encodes the nuclear inclusion a (NIa) and b (NIb) proteins and the N-terminus of the capsid protein (NIa-NIb-CP). Lines transformed with this PPV genomic fragment harboring mutations in the GDD replicase-motif were also obtained. Plants of NIaDeltaV lines that carry a GDD to VDD mutation in the PPV transgene, were immune to PPV infection. The resistance was highly specific, since it was only partially overcome by a PPV strain different to that from which the transgene was derived, and no resistance was observed after inoculation with a second potyvirus. PPV was not able to replicate in protoplasts isolated from NIaDeltaV transgenic plants, indicating that the resistance was functional at the single cell level. Only a fraction of plants from lines transformed with the NIa-NIb-CP fragment harboring a GDD to ADD mutation (NIaDeltaA lines), were resistant to PPV infection. This same phenotype was observed in plants expressing the wild-type construction (NIaDelta), although the progeny of some non-infected plants seemed to be completely resistant to PPV, independently of the allelic status of the parental plant. In all cases, the resistance phenotype correlated positively with low levels of transgene mRNA accumulation, suggesting that it was mainly due to a gene silencing mechanism. Our results show that, although the transgene was not silenced in all R1 plants from some individual lines, a stable silenced status could be reached in the following generations.
Collapse
Affiliation(s)
- H S Guo
- Centro Nacional de Biotecnología (C.S.I.C.), Campus de la Universidad Autónoma, 28049, Madrid, Spain
| | | | | |
Collapse
|
12
|
Affiliation(s)
- P Palukaitis
- Department of Virology, Scottish Crop Research Institute, Invergowrie, Dundee, United Kingdom
| | | |
Collapse
|