1
|
Luo M, He N, Xu Q, Wen Z, Wang Z, Zhao J, Liu Y. Roles of prostaglandins in immunosuppression. Clin Immunol 2024; 265:110298. [PMID: 38909972 DOI: 10.1016/j.clim.2024.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Prostaglandins (PGs) play a crucial and multifaceted role in various physiological processes such as intercellular signaling, inflammation regulation, neurotransmission, vasodilation, vasoconstriction, and reproductive functions. The diversity and biological significance of these effects are contingent upon the specific types or subtypes of PGs, with each PG playing a crucial role in distinct physiological and pathological processes. Particularly within the immune system, PGs are essential in modulating the function of immune cells and the magnitude and orientation of immune responses. Hence, a comprehensive comprehension of the functions PG signaling pathways in immunosuppressive regulation holds substantial clinical relevance for disease prevention and treatment strategies. The manuscript provides a review of recent developments in PG signaling in immunosuppressive regulation. Furthermore, the potential clinical applications of PGs in immunosuppression are also discussed. While research into the immunosuppressive effects of PGs required further exploration, targeted therapies against their immunosuppressive pathways might open new avenues for disease prevention and treatment.
Collapse
Affiliation(s)
- Minjie Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Nina He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Zhongchi Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Ziqin Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China.
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China.
| |
Collapse
|
2
|
Al-Waili N. Mixing two different propolis samples potentiates their antimicrobial activity and wound healing property: A novel approach in wound healing and infection. Vet World 2018; 11:1188-1195. [PMID: 30250383 PMCID: PMC6141293 DOI: 10.14202/vetworld.2018.1188-1195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022] Open
Abstract
Aim: The study aimed to investigate whether mixing two different propolis samples can potentiate their biological activity. This hypothesis was tested by studying the effect of mixed propolis on microbial growth and wound healing and compared with the effect of each propolis individually. Materials and Methods: The effect of mixing two different propolis extracts (A and B) collected from different locations in Iraq on Escherichia coli, Staphylococcus aureus, and Candida albicans was studied by minimum inhibitory concentration assessment and compared with the effect of each propolis. Wound healing effect of the mixed propolis was studied. Twenty-four rabbits were used for the experiment, and they were assigned to four groups. Wounds were created on the dorsum of each rabbit and treated by topical application of 1 mL of either mixed propolis, propolis A, or propolis B extracts or were kept without treatment as a control. Macroscopic wound evaluation was performed with an assessment of wound size, wound recovery, redness, edema, discharge, granulation tissue, and epithelialization. Results: Propolis A was more potent than propolis B extracts to inhibit the growth of E. coli, S. aureus, and C. albicans (p<0.05). However, mixed propolis showed a higher antimicrobial activity toward all the pathogens than propolis A or propolis B extract individually (p<0.05). Furthermore, propolis A and propolis B extracts showed favorable effects on wound healing which was more pronounced with propolis A extract. Interestingly, mixed propolis accelerated wound healing faster than propolis A or propolis B extracts, and it shortened the time of reepithelialization (p<0.05). Conclusion: This study demonstrates for the first time that mixing different propolis samples possesses a higher antimicrobial activity and higher wound healing property than individual propolis. This approach could pave the way for the development of more effective antimicrobials and wound healing agents.
Collapse
Affiliation(s)
- Noori Al-Waili
- Private Clinic, Basic Science Research, Al-Rusafa, Baghdad, Iraq.,New York Medical Care for Nephrology, New York, 11418, US
| |
Collapse
|
3
|
Amzoiu DC, Pisoschi CG, Stoian Bulearcă AM, Rău G. Blood Glutathione Peroxidase Activity in Patients with Osteoarthritis Treated with Oxicams. CURRENT HEALTH SCIENCES JOURNAL 2016; 42:29-34. [PMID: 30568809 PMCID: PMC6256138 DOI: 10.12865/chsj.42.01.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/16/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE The main objective of this study was the comparison of the influence for three non-steroidal anti-inflammatory drugs (NSAIDs) belonging to the oxicam class, namely piroxicam and tenoxicam, as non-selective inhibitors of cyclooxygenase (COX), and meloxicam, a selective COX-2 inhibitor, on glutathione peroxidase (GPx) activity in patients with osteoarthritis of the knee. MATERIAL/METHODS Thirty adult subjects clinically and radiographically diagnosed with knee osteoarthritis, who were not previously subjected to any treatment, were enrolled. They were divided in three groups, each with ten subjects. The serum levels of GPx were assessed at baseline and after twenty days of treatment. The first group received piroxicam at a dose of 20 mg orally daily, the second group was treated with tenoxicam at a dose of 20 mg orally daily, and in the third group meloxicam was administrated in a dose of 15 mg orally daily. RESULTS After the treatment, it was observed an increase of the GPx activity in all groups. The group treated with meloxicam presented the highest rise in the GPx level (p = 0.052). CONCLUSIONS The 20 days study concerning the effects of treatment with NSAIDs belonging to the oxicam class in subjects with knee osteoarthritis revealed that piroxicam, tenoxicam and meloxicam determined a slightly increase in the GPx activity, although this rise had no statistical significance.
Collapse
Affiliation(s)
- D C Amzoiu
- University of Medicine and Pharmacy of Craiova, Faculty of Pharmacy, Department of Pharmaceutical Chemistry
| | - C G Pisoschi
- University of Medicine and Pharmacy of Craiova, Faculty of Pharmacy, Department of Biochemistry
| | - A M Stoian Bulearcă
- University of Medicine and Pharmacy of Craiova, Faculty of Pharmacy, Department of Organic Chemistry. Pharmaceutical Chemistry
| | - G Rău
- University of Medicine and Pharmacy of Craiova, Faculty of Pharmacy, Department of Organic Chemistry. Pharmaceutical Chemistry
| |
Collapse
|
4
|
Al-Waili N, Salom K, Al-Ghamdi A, Ansari MJ, Al-Waili A, Al-Waili T. Honey and cardiovascular risk factors, in normal individuals and in patients with diabetes mellitus or dyslipidemia. J Med Food 2014; 16:1063-78. [PMID: 24328699 DOI: 10.1089/jmf.2012.0285] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diabetes mellitus, hypercholesteremia, hypertension (HTN), and obesity are well-known risk factors for cardiovascular diseases (CVD). Various medications are currently in use for management of these comorbidities. Undesirable side effects are unavoidable and the ultimate and ideal goal is hardly achieved. Honey and other bee products are widely used in traditional medicine for management of many diseases. Others and the authors have found potent biological activities of these products. Honey is now reintroduced in modern medicine as part of wound and burn management. Honey has antioxidant, anti-inflammatory, and antimicrobial activities. More studies are exploring other aspects of honey activity such as its effect on blood sugar, body weight, lipid profile, C-reactive protein, nitric oxide, proinflammatory prostaglandins, and homocysteine. Growing evidence and scientific data support the use of honey in patients with diabetes, HTN, dyslipidemia, obesity, and CVD. This review discusses clinical and preclinical studies on potential influence of honey on diabetes mellitus and cardiovascular risk factors, and emphasizes the importance of conducting more clinical and controlled studies.
Collapse
|