1
|
Guo Z, Lv L, Liu D, Ma H, Radović Č. Effect of SNPs on Litter Size in Swine. Curr Issues Mol Biol 2024; 46:6328-6345. [PMID: 39057020 PMCID: PMC11276056 DOI: 10.3390/cimb46070378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 07/28/2024] Open
Abstract
Although sows do not directly enter the market, they play an important role in piglet breeding on farms. They consume large amounts of feed, resulting in a significant environmental burden. Pig farms can increase their income and reduce environmental pollution by increasing the litter size (LS) of swine. PCR-RFLP/SSCP and GWAS are common methods to evaluate single-nucleotide polymorphisms (SNPs) in candidate genes. We conducted a systematic meta-analysis of the effect of SNPs on pig LS. We collected and analysed data published over the past 30 years using traditional and network meta-analyses. Trial sequential analysis (TSA) was used to analyse population data. Gene set enrichment analysis and protein-protein interaction network analysis were used to analyse the GWAS dataset. The results showed that the candidate genes were positively correlated with LS, and defects in PCR-RFLP/SSCP affected the reliability of candidate gene results. However, the genotypes with high and low LSs did not have a significant advantage. Current breeding and management practices for sows should consider increasing the LS while reducing lactation length and minimizing the sows' non-pregnancy period as much as possible.
Collapse
Affiliation(s)
- Zhenhua Guo
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Lei Lv
- Wood Science Research Institute, Heilongjiang Academy of Forestry, No. 134 Haping Road, Harbin 150080, China
| | - Di Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Hong Ma
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Čedomir Radović
- Department of Pig Breeding and Genetics, Institute for Animal Husbandry, Autoput 16, 11080 Belgrade, Serbia
| |
Collapse
|
2
|
Song H, Chu J, Li W, Li X, Fang L, Han J, Zhao S, Ma Y. A Novel Approach Utilizing Domain Adversarial Neural Networks for the Detection and Classification of Selective Sweeps. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304842. [PMID: 38308186 PMCID: PMC11005742 DOI: 10.1002/advs.202304842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/10/2024] [Indexed: 02/04/2024]
Abstract
The identification and classification of selective sweeps are of great significance for improving the understanding of biological evolution and exploring opportunities for precision medicine and genetic improvement. Here, a domain adaptation sweep detection and classification (DASDC) method is presented to balance the alignment of two domains and the classification performance through a domain-adversarial neural network and its adversarial learning modules. DASDC effectively addresses the issue of mismatch between training data and real genomic data in deep learning models, leading to a significant improvement in its generalization capability, prediction robustness, and accuracy. The DASDC method demonstrates improved identification performance compared to existing methods and excels in classification performance, particularly in scenarios where there is a mismatch between application data and training data. The successful implementation of DASDC in real data of three distinct species highlights its potential as a useful tool for identifying crucial functional genes and investigating adaptive evolutionary mechanisms, particularly with the increasing availability of genomic data.
Collapse
Affiliation(s)
- Hui Song
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
| | - Jinyu Chu
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
| | - Wangjiao Li
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Lingzhao Fang
- Center for Quantitative Genetics and GenomicsAarhus UniversityAarhus8000Denmark
| | - Jianlin Han
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
- CAAS‐ILRI Joint Laboratory on Livestock and Forage Genetic ResourcesInstitute of Animal ScienceChinese Academy of Agricultural Sciences (CAAS)Beijing100193China
- Livestock Genetics ProgramInternational Livestock Research Institute (ILRI)Nairobi00100Kenya
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
- Lingnan Modern Agricultural Science and Technology Guangdong LaboratoryGuangzhou510642China
| | - Yunlong Ma
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
- Lingnan Modern Agricultural Science and Technology Guangdong LaboratoryGuangzhou510642China
| |
Collapse
|
3
|
Park J. Genome-wide association study to reveal new candidate genes using single-step approaches for productive traits of Yorkshire pig in Korea. Anim Biosci 2024; 37:451-460. [PMID: 38271983 PMCID: PMC10915189 DOI: 10.5713/ab.23.0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/25/2023] [Accepted: 11/08/2023] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE The objective is to identify genomic regions and candidate genes associated with age to 105 kg (AGE), average daily gain (ADG), backfat thickness (BF), and eye muscle area (EMA) in Yorkshire pig. METHODS This study used a total of 104,380 records and 11,854 single nucleotide polymorphism (SNP) data obtained from Illumina porcine 60K chip. The estimated genomic breeding values (GEBVs) and SNP effects were estimated by single-step genomic best linear unbiased prediction (ssGBLUP). RESULTS The heritabilities of AGE, ADG, BF, and EMA were 0.50, 0.49, 0.49, and 0.23, respectively. We identified significant SNP markers surpassing the Bonferroni correction threshold (1.68×10-6), with a total of 9 markers associated with both AGE and ADG, and 4 markers associated with BF and EMA. Genome-wide association study (GWAS) analyses revealed notable chromosomal regions linked to AGE and ADG on Sus scrofa chromosome (SSC) 1, 6, 8, and 16; BF on SSC 2, 5, and 8; and EMA on SSC 1. Additionally, we observed strong linkage disequilibrium on SSC 1. Finally, we performed enrichment analyses using gene ontology and Kyoto encyclopedia of genes and genomes (KEGG), which revealed significant enrichments in eight biological processes, one cellular component, one molecular function, and one KEGG pathway. CONCLUSION The identified SNP markers for productive traits are expected to provide valuable information for genetic improvement as an understanding of their expression.
Collapse
Affiliation(s)
- Jun Park
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896,
Korea
| |
Collapse
|
4
|
Wu S, Xie J, Zhong T, Shen L, Zhao Y, Chen L, Gan M, Zhang S, Zhu L, Niu L. Genetic polymorphisms in ESR and FSHβ genes and their association with litter traits in Large White pigs. Anim Biotechnol 2023; 34:4713-4720. [PMID: 36927230 DOI: 10.1080/10495398.2023.2187405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The estrogen receptor (ESR) gene and follicle-stimulating hormone β (FSHβ) gene are responsible for litter traits. The present study aimed to verify the polymorphisms of ESR and FSHβ and assess their effects on the litter traits in 201 Large White pigs. Four SNPs (g.C669T, g.A1296G, g.C1665T and g.A1755G) were found in ESR. The TT genotype at g.C1665T locus and AA genotype at g.A1755G locus could significantly increase the total litter size of the first litter of American Large White pigs (p < 0.05). Eight SNPs were found in exon 3 of FSHβ. The AA genotype at g.A511G locus, AA and AG genotypes at g.A617G locus, CC and CT genotypes at g.C630T locus, CT and TT genotypes at g.C652T locus, CT and TT genotypes at g.C735T locus, AA and AG genotypes at g.A746G, AA and AG genotypes at g.A921G and CT genotype at g.C678T could significantly increase the litter size of different strains of Large White pigs (p < 0.05). Our study revealed that the genetic variations of ESR and FSHβ were closely related to the litter trait of Large White pigs. Therefore, ESR and FSHβ genes could be used as molecular markers for the genetic selection of Large White pigs.
Collapse
Affiliation(s)
- Shun Wu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jingjing Xie
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tao Zhong
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Linyuan Shen
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ye Zhao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lei Chen
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mailin Gan
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shunhua Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Zhu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lili Niu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Liu Z, Xu R, Zhang H, Wang D, Wang J, Wu K. A unique 15-bp InDel in the first intron of BMPR1B regulates its expression in Taihu pigs. BMC Genomics 2022; 23:799. [PMID: 36463109 PMCID: PMC9719134 DOI: 10.1186/s12864-022-08988-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/03/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND BMPR1B (Bone morphogenetic protein receptor type-1B) is a receptor in the bone morphogenetic protein (BMP) family and has been identified as a candidate gene for reproductive traits in pigs. Our previous study in Taihu pigs found a specific estrogen response element (ERE) in the first intron of the BMPR1B gene that is associated with the number born alive trait. However, little is known about the mechanism by which the ERE regulates the expression of BMPR1B in the endometrium. RESULTS Here, a 15-bp InDel (insertion/deletion) (AGCCAGAAAGGAGGA) was identified as a unique variation in Taihu pigs, and was shown to be responsible for the binding of the type I receptor of estrogen (ESR1) to the ERE using dual-luciferase assays. Four BMPR1B transcripts (T1, T2, T3, and T4) were identified by 5' RACE in endometrial tissue. Expression of T3 and T4 in the endometrium of Meishan pigs was significantly higher than in Duroc pigs during pregnancy. Luciferase assays showed that three distinct BMPR1B promoters may drive expression of T1, T3, and T4. Interestingly, ERE-mediated enhancement of T4 promoter activity significantly increased expression of Transcript T4 in the endometrium of Taihu pigs (P < 0.05). In contrast, the ERE inhibited activity of the T3 promoter and decreased expression of the T3 transcript in the Duroc background (P < 0.05). In summary, we identified a 15-bp InDel in the Taihu ERE that can be used as a molecular marker for the number born alive trait, characterized the 5' untranslated regions (UTRs) of BMPR1B transcripts in the endometrium, and determined how the transcripts are processed by alternative splicing events. CONCLUSIONS Our results provide a foundation for understanding the transcriptional regulation of BMPR1B and its contributions to the unique breeding prolificacy characteristics of Taihu pigs.
Collapse
Affiliation(s)
- Zhexi Liu
- grid.22935.3f0000 0004 0530 8290Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China ,grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ran Xu
- grid.22935.3f0000 0004 0530 8290Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China ,grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Han Zhang
- grid.22935.3f0000 0004 0530 8290Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China ,grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Depeng Wang
- grid.22935.3f0000 0004 0530 8290Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China ,grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ji Wang
- grid.22935.3f0000 0004 0530 8290Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China ,grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Keliang Wu
- grid.22935.3f0000 0004 0530 8290Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China ,grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Identification of Candidate Genes for Twinning Births in Dezhou Donkeys by Detecting Signatures of Selection in Genomic Data. Genes (Basel) 2022; 13:genes13101902. [PMID: 36292787 PMCID: PMC9601833 DOI: 10.3390/genes13101902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Twinning trait in donkeys is an important manifestation of high fecundity, but few reports are available elucidating its genetic mechanism. To explore the genetic mechanism underlying the twin colt trait in Dezhou donkeys, DNA from 21 female Dezhou donkeys that had birthed single or twin colts were collected for whole-genome resequencing. FST, θπ and Tajima’s D were used to detect the selective sweeps between single and twin colt fecundity in the Dezhou donkey groups. Another set of 20 female Dezhou donkeys with single or multiple follicles during estrus were selected to compare concentrations of reproductive hormone including follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2) and progesterone (P4). Four candidate genes including ENO2, PTPN11, SOD2 and CD44 were identified in the present study. The CD44 gene had the highest FST value, and ENO2, PTPN11 and SOD2 were screened by two joint analyses (FST and θπ, θπ and Tajima’s D). There was no significant difference in the LH, FSH and P4 levels between the two groups (p > 0.05); however, the serum E2 content in the multi-follicle group was significantly higher than that in the single-follicle group (p < 0.05). The identified candidate genes may provide new insights into the genetic mechanism of donkey prolificacy and may be useful targets for further research on high reproductive efficiency.
Collapse
|
7
|
Chen J, Wu Z, Chen R, Huang Z, Han X, Qiao R, Wang K, Yang F, Li XJ, Li XL. Identification of Genomic Regions and Candidate Genes for Litter Traits in French Large White Pigs Using Genome-Wide Association Studies. Animals (Basel) 2022; 12:ani12121584. [PMID: 35739920 PMCID: PMC9219640 DOI: 10.3390/ani12121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
The reproductive traits of sows are one of the important economic traits in pig production, and their performance directly affects the economic benefits of the entire pig industry. In this study, a total of 895 French Large White pigs were genotyped by GeneSeek Porcine 50K SNP Beadchip and four phenotypic traits of 1407 pigs were recorded, including total number born (TNB), number born alive (NBA), number healthy piglets (NHP) and litter weight born alive (LWB). To identify genomic regions and genes for these traits, we used two approaches: a single-locus genome-wide association study (GWAS) and a single-step GWAS (ssGWAS). Overall, a total of five SNPs and 36 genomic regions were identified by single-locus GWAS and ssGWAS, respectively. Notably, fourof all five significant SNPs were located in 10.72–11.06 Mb on chromosome 7, were also identified by ssGWAS. These regions explained the highest or second highest genetic variance in the TNB, NBA and NHP traits and harbor the protein coding gene ENSSSCG00000042180. In addition, several candidate genes associated with litter traits were identified, including JARID2, PDIA6, FLRT2 and DICER1. Overall, these novel results reflect the polygenic genetic architecture of the litter traits and provide a theoretical reference for the following implementation of molecular breeding.
Collapse
|
8
|
Du X, Li Q, Yang L, Zeng Q, Wang S, Li Q. Transcriptomic Data Analyses Reveal That Sow Fertility-Related lincRNA NORFA Is Essential for the Normal States and Functions of Granulosa Cells. Front Cell Dev Biol 2021; 9:610553. [PMID: 33708768 PMCID: PMC7940361 DOI: 10.3389/fcell.2021.610553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
NORFA, the first lincRNA associated with sow fertility, has been shown to control granulosa cell (GC) functions and follicular atresia. However, the underlying mechanism is not fully understood. In this study, RNA-seq was performed and we noticed that inhibition of NORFA led to dramatic transcriptomic alterations in porcine GCs. A total of 1,272 differentially expressed transcripts were identified, including 1167 DEmRNAs and 105 DEmiRNAs. Furthermore, protein-protein interaction, gene-pathway function, and TF-miRNA-mRNA regulatory networks were established and yielded four regulatory modules with multiple hub genes, such as AR, ATG5, BAK1, CENPE, NR5A1, NFIX, WNT5B, ssc-miR-27b, and ssc-miR-126. Functional assessment showed that these hub DEGs were mainly enriched in TGF-β, PI3K-Akt, FoxO, Wnt, MAPK, and ubiquitin pathways that are essential for GC states (apoptosis and proliferation) and functions (hormone secretion). In vitro, we also found that knockdown of NORFA in porcine GCs significantly induced cell apoptosis, impaired cell viability, and suppressed 17β-estradiol (E2) synthesis. Notably, four candidate genes for sow reproductive traits (INHBA, NCOA1, TGFβ-1, and TGFBR2) were also identified as potential targets of NORFA. These findings present a panoramic view of the transcriptome in NORFA-reduced GCs, highlighting that NORFA, a candidate lincRNA for sow fertility, is crucial for the normal states and functions of GCs.
Collapse
Affiliation(s)
- Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Du X, Liu L, Wu W, Li P, Pan Z, Zhang L, Liu J, Li Q. SMARCA2 is regulated by NORFA-miR-29c, a novel pathway that controls granulosa cell apoptosis and is related to female fertility. J Cell Sci 2020; 133:jcs249961. [PMID: 33148612 DOI: 10.1242/jcs.249961] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022] Open
Abstract
SMARCA2, an evolutionarily conserved catalytic ATPase subunit of SWI/SNF complexes, has been implicated in development and diseases; however, its role in mammalian ovarian function and female fertility is unknown. Here, we identified and characterized the 3'-UTR of the porcine SMARCA2 gene and identified a novel adenylate number variation. Notably, this mutation was significantly associated with sow litter size traits and SMARCA2 levels, due to its influence on the stability of SMARCA2 mRNA in ovarian granulosa cells (GCs). Immunohistochemistry and functional analysis showed that SMARCA2 is involved in the regulation of follicular atresia by inhibiting GC apoptosis. In addition, miR-29c, a pro-apoptotic factor, was identified as a functional miRNA that targets SMARCA2 in GCs and mediates regulation of SMARCA2 expression via the NORFA-SMAD4 axis. Although a potential miR-29c-responsive element was identified within NORFA, negative regulation of miR-29c expression by NORFA was not due to activity as a competing endogenous RNA. In conclusion, our findings demonstrate that SMARCA2 is a candidate gene for sow litter size traits, because it regulates follicular atresia and GC apoptosis. Additionally, we have defined a novel candidate pathway for sow fertility, the NORFA-TGFBR2-SMAD4-miR-29c-SMARCA2 pathway.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Pinghua Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiying Liu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
D'Alessandro E, Giosa D, Sapienza I, Giuffrè L, Cigliano RA, Romeo O, Zumbo A. Whole genome SNPs discovery in Nero Siciliano pig. Genet Mol Biol 2019; 42:594-602. [PMID: 31188930 PMCID: PMC6905442 DOI: 10.1590/1678-4685-gmb-2018-0169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/04/2019] [Indexed: 11/24/2022] Open
Abstract
Autochthonous pig breeds represent an important genetic reserve to be utilized mainly for the production of typical products. To explore its genetic variability, here we present for the first time whole genome sequencing data and SNPs discovered in a male domestic Nero Siciliano pig compared to the last pig reference genome Sus scrofa11.1.A total of 346.8 million paired reads were generated by sequencing. After quality control, 99.03% of the reads were mapped to the reference genome, and over 11 million variants were detected.Additionally, we evaluated sequence diversity in 21 fitness-related loci selected based on their biological function and/or their proximity to relevant QTLs. We focused on genes that have been related to environmental adaptation and reproductive traits in previous studies regarding local breeds. A total of 6,747 variants were identified resulting in a rate of 1 variant every ~276 bases. Among these variants 1,132 were novel to the dbSNP151 database. This study represents a first step in the genetic characterization of Nero Siciliano pig and also provides a platform for future comparative studies between this and other swine breeds.
Collapse
Affiliation(s)
- Enrico D'Alessandro
- Department of Veterinary Sciences, Division of Animal Production, University of Messina, Messina, Italy
| | - Domenico Giosa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Sapienza
- Department of Veterinary Sciences, Division of Animal Production, University of Messina, Messina, Italy
| | - Letterio Giuffrè
- Department of Veterinary Sciences, Division of Animal Production, University of Messina, Messina, Italy
| | | | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Scientific Institute for Research, Hospitalization and Health Care (IRCCS) - Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Alessandro Zumbo
- Department of Veterinary Sciences, Division of Animal Production, University of Messina, Messina, Italy
| |
Collapse
|
11
|
Pang P, Li Z, Hu H, Wang L, Sun H, Mei S, Li F. Genetic effect and combined genotype effect of ESR, FSHβ, CTNNAL1 and miR-27a loci on litter size in a Large White population. Anim Biotechnol 2018; 30:287-292. [PMID: 30178695 DOI: 10.1080/10495398.2018.1486322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
To select new Large White line with high number of piglets born, genotypes of estrogen receptor (ESR), the follicle stimulating hormone β subunit (FSHβ), catenin alpha like 1 (CTNNAL1) and miR-27a were tested in 472 Large White sows. The associations of different genotypes with litter size traits were also studied. The results showed ESRBB and FSHβBB sows produced 0.41-1.49 more pigs per litter (p < .05) for total number born (TNB) and number born alive (NBA) than did other corresponding genotypes. TNB of CTNNAL1CG sows is 0.50 more pigs per litter (p < .05) than that of CTNNAL1GG sows with the dominance effect of 0.25 pigs per litter (p < .05). miR-27aBB sows had a less estimated breeding value (EBV) to TNB and had a more number of mummified pigs (NM) than did miR-27aAA or miR-27aAB sows (p < .05). Therefore, ESRB, FSHβB, CTNNAL1G, miR-27aA allele was favorable for litter size traits. Furthermore, combined genetic effect analysis showed ESRAAFSHβBB, ESRAACTNNAL1CG, ESRAAmiR-27aAA, FSHβBBCTNNAL1CC, FSHβBBmiR-27aAA and CTNNAL1CG miR-27aAB was the favorable combined genotype for litter size traits. These results identified favorable alleles and genotypes for litter size traits and suggested a potential selection scheme for litter size in Large White pigs.
Collapse
Affiliation(s)
- Panfei Pang
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University , Wuhan , China
| | - Zhenzhu Li
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University , Wuhan , China
| | - Hua Hu
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Academy of Agriculture Science , Wuhan , China
| | - Lei Wang
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University , Wuhan , China
| | - Hua Sun
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Academy of Agriculture Science , Wuhan , China
| | - Shuqi Mei
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Academy of Agriculture Science , Wuhan , China
| | - Fenge Li
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University , Wuhan , China.,The Cooperative Innovation Centre for Sustainable Pig Production , Wuhan , China
| |
Collapse
|
12
|
Li WT, Zhang MM, Li QG, Tang H, Zhang LF, Wang KJ, Zhu MZ, Lu YF, Bao HG, Zhang YM, Li QY, Wu KL, Wu CX. Whole-genome resequencing reveals candidate mutations for pig prolificacy. Proc Biol Sci 2018; 284:rspb.2017.2437. [PMID: 29263279 DOI: 10.1098/rspb.2017.2437] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/24/2017] [Indexed: 01/22/2023] Open
Abstract
Changes in pig fertility have occurred as a result of domestication, but are not understood at the level of genetic variation. To identify variations potentially responsible for prolificacy, we sequenced the genomes of the highly prolific Taihu pig breed and four control breeds. Genes involved in embryogenesis and morphogenesis were targeted in the Taihu pig, consistent with the morphological differences observed between the Taihu pig and others during pregnancy. Additionally, excessive functional non-coding mutations have been specifically fixed or nearly fixed in the Taihu pig. We focused attention on an oestrogen response element (ERE) within the first intron of the bone morphogenetic protein receptor type-1B gene (BMPR1B) that overlaps with a known quantitative trait locus (QTL) for pig fecundity. Using 242 pigs from 30 different breeds, we confirmed that the genotype of the ERE was nearly fixed in the Taihu pig. ERE function was assessed by luciferase assays, examination of histological sections, chromatin immunoprecipitation, quantitative polymerase chain reactions, and western blots. The results suggest that the ERE may control pig prolificacy via the cis-regulation of BMPR1B expression. This study provides new insight into changes in reproductive performance and highlights the role of non-coding mutations in generating phenotypic diversity between breeds.
Collapse
Affiliation(s)
- Wen-Ting Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China.,College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Meng-Meng Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qi-Gang Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China
| | - Hui Tang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, People's Republic of China
| | - Li-Fan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Ke-Jun Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China.,College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Mu-Zhen Zhu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yun-Feng Lu
- School of Life Science and Technology, Nanyang Normal University, No. 1638 Wolong Road, Nanyang Henan 473061, People's Republic of China
| | - Hai-Gang Bao
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yuan-Ming Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Qiu-Yan Li
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Ke-Liang Wu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Chang-Xin Wu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
13
|
Zhang S, Yang J, Wang L, Li Z, Pang P, Li F. SLA-11 mutations are associated with litter size traits in Large White and Chinese DIV pigs. Anim Biotechnol 2018; 30:212-218. [PMID: 29936889 DOI: 10.1080/10495398.2018.1471401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Litter size is an important economic traits in pigs. SLA-11 gene is a member of SLA (swine leukocyte antigen) complex. In our previous study, the SLA-11 gene was differentially expressed in PMSG-hCG stimulated preovulatory ovarian follicles of Chinese Taihu and Large White sows. Here, we identified two mutations (c.754-132 T > C and c.1421 + 38 T > C) in SLA-11 gene and analyzed the associations of two SNPs with litter size traits in Large White (n = 263) and DIV (n = 117) sows. The results showed that in Large White pigs, SLA-11 c.754-132 CC sows produced 0.74 and 0.87 more pigs per litter for TNB and NBA of all parities than did TT sows (p < .05); In DIV pigs, SLA-11 c.754-132 CC sows produced 1.17 more pigs per litter for TNB of all parities than did TC sows (p < .05). In Large White pigs, SLA-11 c.1421 + 38 CC sows produced 0.9 more pigs per litter for TNB of all parities than did TT sows (p < .05), while in DIV pigs SLA-11 c.1421 + 38 CC sows produced 0.84 and 0.7 less pigs per litter for TNB and NBA of all parities than did TT sows (p < .05). Our research indicated that SLA-11 mutations were potential molecular markers for improving the litter size traits in pigs.
Collapse
Affiliation(s)
- Shuna Zhang
- a Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education , Huazhong Agricultural University , Wuhan , PR China
| | - Jiahao Yang
- a Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education , Huazhong Agricultural University , Wuhan , PR China
| | - Lei Wang
- a Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education , Huazhong Agricultural University , Wuhan , PR China
| | - Zhenzhu Li
- a Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education , Huazhong Agricultural University , Wuhan , PR China
| | - Panfei Pang
- a Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education , Huazhong Agricultural University , Wuhan , PR China
| | - Fenge Li
- a Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education , Huazhong Agricultural University , Wuhan , PR China.,b The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , PR China
| |
Collapse
|
14
|
Liu C, Ran X, Yu C, Xu Q, Niu X, Zhao P, Wang J. Whole-genome analysis of structural variations between Xiang pigs with larger litter sizes and those with smaller litter sizes. Genomics 2018; 111:310-319. [PMID: 29481841 DOI: 10.1016/j.ygeno.2018.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 02/08/2018] [Accepted: 02/11/2018] [Indexed: 11/30/2022]
Abstract
To gain a better knowledge of structural variations (SVs) in Xiang pig, we used next-generation sequencing to analyze the Xiang pigs with larger (XL) or smaller litter sizes (XS). Our analysis yielded 28,040 putative SVs in the Xiang pig. These SVs distributed throughout all of chromosomes. Some functional regions including exons and untranslated regions were less varied than introns and intergenic regions. We detected 4637 and 4119 specific SVs, which contained 1697 and 1582 genes in XL and XS group, respectively. These genes were mainly enriched in the well-known pathways involved in development and reproduction processes. Population validation was carried out on 50 SVs candidates using PCR method in 144 Xiang pig crowds. All of 50 SVs were confirmed by PCR method and 14 SVs were associated with the litter size of Xiang pigs. These results may be helpful for the elucidation of growth and reproduction regulation in Xiang pig.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Agro-Bioengineering, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xueqin Ran
- Institute of Agro-Bioengineering, College of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Changyan Yu
- Institute of Agro-Bioengineering, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Qian Xu
- Institute of Agro-Bioengineering, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xi Niu
- Institute of Agro-Bioengineering, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Pengju Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing 100083, China
| | - Jiafu Wang
- Institute of Agro-Bioengineering, College of Animal Science, Guizhou University, Guiyang 550025, China; Tongren University, Tongren 554300, China.
| |
Collapse
|
15
|
Wang H, Chen L, Jiang Y, Gao S, Chen S, Zheng X, Liu Z, Zhao Y, Li H, Yu J, Wang F, Liu Y, Li C, Zhou X. Association of gene polymorphisms of estrogen receptor, follicle-stimulating hormone β and leptin with follicular cysts in Large White sows. Theriogenology 2017; 103:143-148. [DOI: 10.1016/j.theriogenology.2017.03.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/24/2022]
|
16
|
Li W, Quan Y, Zhang M, Wang K, Zhu M, Chen Y, Li Q, Wu K. Effects of pituitary-specific overexpression of FSHα/β on reproductive traits in transgenic boars. J Anim Sci Biotechnol 2017; 8:84. [PMID: 29090093 PMCID: PMC5655851 DOI: 10.1186/s40104-017-0208-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/29/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Follicle-stimulating hormone (FSH) is a gonadotropin synthesized and secreted by the pituitary gland. FSH stimulates follicle development and maturation in females. It also plays an important role in spermatogenesis in males, including humans and mice. However, the effects of FSH on male pigs are largely unknown. In this study, we generated transgenic pigs to investigate the effects of FSHα/β overexpression on reproductive traits in boars. RESULTS After five transgenic F0 founders were crossed with wide-type pigs, 193 F1 animals were obtained. Of these, 96 were confirmed as transgenic. FSHα and FSHβ mRNAs were detected only in pituitary tissue. Transgenic boars exhibited significantly higher levels of FSHα and FSHβ mRNA, serum FSH, and serum testosterone, compared to full-sib non-transgenic boars. Significant increases in testis weight, vas deferens diameter, seminiferous tubule diameter, and the number of Leydig cells were observed, suggesting that the exogenous FSHα/β affects reproductive traits. Finally, transgenic and non-transgenic boars had similar growth performance and biochemical profiles. CONCLUSIONS Pituitary-specific overexpression of FSHα/β genes is likely to impact reproductive traits positively, as indicated by enhancements in serum testosterone level, testis weight, the development of vas deferens, seminiferous tubules, and Leydig cells in transgenic boars. A high level of serum FSH induces secretion of serum testosterone, possibly by boosting the number of Leydig cells, which presumably increases the libido and the frequency of sexual activity in transgenic boars. Our study provides a preliminary foundation for the genetic improvement of reproductive traits in male pigs.
Collapse
Affiliation(s)
- Wenting Li
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 China
| | - Yujun Quan
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Mengmeng Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Kejun Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 China
| | - Muzhen Zhu
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Ye Chen
- The Department of Animal Husbandry, Rongchang Campus, Southwest University, Rongchang, Chongqing, 402460 China
| | - Qiuyan Li
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100193 China
| | - Keliang Wu
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
17
|
BAC mediated transgenic Large White boars with FSHα/β genes from Chinese Erhualian pigs. Transgenic Res 2016; 25:693-709. [PMID: 27229510 DOI: 10.1007/s11248-016-9963-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022]
Abstract
Follicle-stimulating hormone (FSH) is a critical hormone regulating reproduction in mammals. Transgenic mice show that overexpression of FSH can improve female fecundity. Using a bacterial artificial chromosome (BAC) system and somatic cell nuclear transfer, we herein generated 67 Large White transgenic (TG) boars harboring FSHα/β genes from Chinese Erhualian pigs, the most prolific breed in the world. We selected two F0 TG boars for further breeding and conducted molecular characterization and biosafety assessment for F1 boars. We showed that 8-9 copies of exogenous FSHα and 5-6 copies of exogenous FSHβ were integrated into the genome of transgenic pigs. The inheritance of exogenous genes conforms to the Mendel's law of segregation. TG boars had higher levels of serum FSH, FSHα mRNA in multiple tissues, FSHβ protein in pituitary and more germ cells per seminiferous tubule compared with their wild-type half sibs without any reproductive defects. Analysis of growth curve, hematological and biochemical parameters and histopathology illustrated that TG boars grew healthily and normally. By applying 16S rRNA gene sequencing, we demonstrated that exogenous genes had no impact on the bacterial community structures of pig guts. Moreover, foreign gene drift did not occur as verified by horizontal gene transfer. Our findings indicate that overexpression of FSH could improve spermatogenesis ability of boars. This work provides insight into the effect of FSHα/β genes on male reproductive performance on pigs by a BAC-mediated transgenic approach.
Collapse
|
18
|
Zhang X, Huang L, Wu T, Feng Y, Ding Y, Ye P, Yin Z. Transcriptomic Analysis of Ovaries from Pigs with High And Low Litter Size. PLoS One 2015; 10:e0139514. [PMID: 26426260 PMCID: PMC4591126 DOI: 10.1371/journal.pone.0139514] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/13/2015] [Indexed: 01/03/2023] Open
Abstract
Litter size is one of the most important economic traits for pig production as it is directly related to the production efficiency. Litter size is affected by interactions between multiple genes and the environment. While recent studies have identified some genes associated with prolificacy in pigs, transcriptomic studies of specific genes affecting litter size in porcine ovaries are rare. In order to identify candidate genes associated with litter size in swine, we assessed gene expression differences between the ovaries of Yorkshire pigs with extremely high and low litter sizes using the RNA-Seq method. A total of 1 243 differentially expressed genes were identified: 897 genes were upregulated and 346 genes were downregulated in high litter size ovary samples compared with low litter size ovary samples. A large number of these genes related to steroid hormone regulation in animal ovaries, including 59 Gene Ontology terms and 27 Kyoto Encyclopedia of Genes and Genomes pathways involved in steroid biosynthesis and ovarian steroidogenesis. From these differentially expressed genes, we identified a total of 11 genes using a bioinformatics screen that may be associated with high litter size in Yorkshire pigs. These results provide a list of new candidate genes for porcine litter size and prolificacy to be further investigated.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People’s Republic of China
| | - Long Huang
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People’s Republic of China
| | - Tao Wu
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People’s Republic of China
| | - Yifang Feng
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People’s Republic of China
| | - Yueyun Ding
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People’s Republic of China
| | - Pengfei Ye
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People’s Republic of China
| | - Zongjun Yin
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People’s Republic of China
- * E-mail:
| |
Collapse
|
19
|
Chen X, Li A, Chen W, Wei J, Fu J, Wang A. Differential Gene Expression in Uterine Endometrium During Implantation in Pigs1. Biol Reprod 2015; 92:52. [DOI: 10.1095/biolreprod.114.123075] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
20
|
Molecular advances in QTL discovery and application in pig breeding. Trends Genet 2013; 29:215-24. [DOI: 10.1016/j.tig.2013.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 11/21/2022]
|
21
|
Bi M, Tong J, Chang F, Wang J, Wei H, Dai Y, Chu M, Zhao Y, Li N. Pituitary-specific overexpression of porcine follicle-stimulating hormone leads to improvement of female fecundity in BAC transgenic mice. PLoS One 2012; 7:e42335. [PMID: 22860114 PMCID: PMC3409198 DOI: 10.1371/journal.pone.0042335] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/03/2012] [Indexed: 11/18/2022] Open
Abstract
Follicle-stimulating hormone (FSH) is a pituitary glycoprotein that, together with luteinizing hormone, plays a crucial role in ovarian folliculogenesis and female fertility. We previously found that FSH beta is a major gene controlling high prolificacy of Chinese Erhualian pigs. To directly study the biological effects on reproductive function of porcine FSH (pFSH) for polyovulatory species, we generated a novel gain-of-function mouse model using a bacterial artificial chromosome (BAC) system to jointly introduce 92 kb and 165 kb genomic fragments comprising the pFSH α- and β-subunit genes. These directed the physiological expression of pFSH with the same temporal and spatial pattern as endogenous FSH in female transgenic (TG) mice. Serum levels of biologically active pFSH heterodimers in independent TG lines ranged from 6.36 to 19.83 IU/L. High basal pFSH activity led to a significant reduction of serum LH and testosterone levels in TG females compared to wild-type (WT) littermates, yet endogenous FSH and estradiol levels were significantly elevated. Interestingly, ovarian histology showed that the number of corpora lutea was significantly higher at 14 and 28 weeks of age in TG females and breeding curves revealed that mean litter sizes of TG females were obviously larger than for WT littermates before 52 weeks of age. These findings indicate that pituitary-specific overexpression of pFSH within physiological boundaries can increase ovulation rate and litter size, but it does not cause reproductive defects. Therefore, our TG mouse model provides exciting insights for investigating the actions of pFSH in vivo.
Collapse
Affiliation(s)
- Mingjun Bi
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jia Tong
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fei Chang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jing Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hengxi Wei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Sciences, South China Agricultural University, Guangzhou, China
| | - Yunping Dai
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mingxing Chu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaofeng Zhao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
22
|
Abstract
Tibet pig is a unique native breed in the plateau of China, which has good adaptation to the harsh climate of high land and resistance to diseases and crude feeding. However, its reproductive rate is low. The objectives of this study were to search for the polymorphisms of estrogen receptor (ESR), follicle-stimulating hormone (FSHb), prolactin receptor (PRLR), and retinol binding protein 4 (RBP4) in Tibet pig and to analyze the effects of these variants and their combination genotypes on reproductive traits. The results showed that the effects of FSHb, ESR, and PRLR genes were significant in the Tibet pig population, and the effective genotypes of the three genes for reproductive traits were BB, BB, and AA, respectively. There were two genotypes for RBP4 gene in Tibet pig, which did not have significant effect on the reproductive traits. The optical genotype of FSHb-ESR-PRLR is BB-BB-AA, which is more effective on reproductive traits than any single gene in Tibet pig.
Collapse
|
23
|
Shi K, Wang A, Li N, Deng X. Single nucleotide polymorphism analysis on melanocortin receptor 1 (MC1R) of Chinese native pig. ACTA ACUST UNITED AC 2004; 47:287-92. [PMID: 15524286 DOI: 10.1007/bf03182774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Melanocortin receptor 1 (MC1R) gene, one of the important candidate genes for coat color trait, was used to analyze the single nucleotide polymorphism (SNP) in Chinese native pig breeds by PCR-single strand conformation polymorphism (PCR-SSCP). The study had also taken 3 imported pig breeds as control. The results showed that the three mutations G284A, T309C and T364C found in Chinese native pigs were consistent to the mutation found in the European Large Black individuals. However, 68CC or C492T and G728A were only found in the imported individuals, which were obviously different from the Chinese native pigs. Accordingly, we presumed that the coat colors of Chinese native pigs belonged to dominant black color system, which was completely distinct to that of imported pig breeds. Thus it was implied that MC1R gene was not the principal factor affecting the coat color differences of Chinese native pig breeds, but could be used to trace the molecular evolution of pig breeds.
Collapse
Affiliation(s)
- Kerong Shi
- College of Animal Science and Technology, China Agricultural University, Beijing 100094, China
| | | | | | | |
Collapse
|
24
|
Kim J, Song W, Choi B, Kho Y, Park S, Hong K. Association of Genetic Polymorphisms of Estrogen Receptor with Litter Size using PCR-RFLP in Yorkshire Swine. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2003. [DOI: 10.5187/jast.2003.45.4.523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Isler BJ, Irvin KM, Neal SM, Moeller SJ, Davis ME. Examination of the relationship between the estrogen receptor gene and reproductive traits in swine12. J Anim Sci 2002. [DOI: 10.1093/ansci/80.9.2334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Chen K, Li N, Huang L, Zhang Q, Zhang J, Sun S, Luo M, Wu C. The combined genotypes effect of ESR and FSHβ genes on litter size traits in five different pig breeds. ACTA ACUST UNITED AC 2001. [DOI: 10.1007/bf03187010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|