Lin HC, Wang CH, Yu CT, Huang KS, Liu CY, Yang CW, Kuo HP. Effect of endogenous nitric oxide on hyperoxia and tumor necrosis factor-alpha-induced leukosequestration and proinflammatory cytokine release in rat airways.
Crit Care Med 2003;
31:508-16. [PMID:
12576959 DOI:
10.1097/01.ccm.0000050297.98028.0e]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE
To investigate the effects of endogenous nitric oxide on hyperoxia and tumor necrosis factor-alpha-induced leukosequestration and proinflammatory cytokine release in rat airways.
DESIGN
Prospective, randomized, controlled animal study.
SETTING
Experimental laboratory.
SUBJECTS
Male Sprague-Dawley rats weighing 350-500 g.
INTERVENTIONS
The rats were pretreated with N(G)-nitro-L-arginine methyl ester (L-NAME; 10 mg/kg) or saline intravenously 4-6 mins before intratracheal administration of tumor necrosis factor-alpha, 95% oxygen, or both, when the vasopressor effect of L-NAME had reached a plateau.
MEASUREMENTS AND MAIN RESULTS
Bronchoalveolar lavage fluid was recovered from the airway of rats after exposure to 95% oxygen and tumor necrosis factor-alpha for 6 hrs under ventilator support. Neutrophils in lavage fluid were isolated and examined for the inducible nitric oxide synthase expression by flow-cytometric assay. Tumor necrosis factor-alpha and interleukin-1 beta in lavage fluid were measured by enzyme-linked immunosorbent assay. The percentage of neutrophils in bronchoalveolar fluid was significantly higher in rats exposed to hyperoxia + tumor necrosis factor-alpha (29.7 +/- 12.5%) compared with rats with hyperoxia (16.3 +/- 1.2%), tumor necrosis factor-alpha (4.2 +/- 1.1%), or room air (5.0 +/- 1.8%) alone (p <.05). Rats exposed to hyperoxia + tumor necrosis factor-alpha had significantly higher concentrations of inducible nitric oxide synthase of neutrophils (350.1 +/- 75.7 mean fluorescence intensity), compared with rats with hyperoxia (64.9 +/- 1.6 mean fluorescence intensity), tumor necrosis factor-alpha (102.6 +/- 15.3 mean fluorescence intensity), or room air (111.2 +/- 25.8 mean fluorescence intensity) alone (p <.05). Rats exposed to hyperoxia + tumor necrosis factor-alpha significantly produced higher concentrations of tumor necrosis factor-alpha and interleukin-1 beta, compared with rats with tumor necrosis factor-alpha, hyperoxia, or room air alone. Hyperoxia + tumor necrosis factor-alpha also significantly increased growth-related oncogene/cytokine-induced neutrophil chemoattractant (GRO/CINC)-1 in bronchoalveolar fluid, compared with those receiving tumor necrosis factor-alpha alone, hyperoxia alone, or room air alone. L-NAME significantly enhanced the percentage of neutrophil recovery and the production of tumor necrosis factor-alpha, interleukin-1 beta, and GRO/CINC-1 in airways compared with the corresponding hyperoxia + tumor necrosis factor-alpha treatment alone.
CONCLUSIONS
Endogenous nitric oxide may be an important endogenous inhibitor of hyperoxia + tumor necrosis factor-alpha-induced leukocyte recruitment and subsequently tumor necrosis factor-alpha, interleukin-1 beta, and GRO/CINC-1 release.
Collapse