1
|
Gürel İ, Aşıcıoğlu F, Ersoy G, Bülbül Ö, Öztürk T, Filoğlu G. InDEL instability in two different tumoral tissues and its forensic significance. Forensic Sci Med Pathol 2024; 20:1241-1250. [PMID: 38568352 PMCID: PMC11790770 DOI: 10.1007/s12024-024-00808-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 02/04/2025]
Abstract
There may be cases where malignant tumor samples can be used for forensic DNA profiling studies. STRs are the first systems preferred in forensic science laboratories for identification purposes. However, genetic instability in tumoral tissues causes STR polymorphism to change, leading to erroneous results. On the other hand, insertion/deletion polymorphism (InDels) are used as genetic markers in forensic science, as they have features that make both STR and SNPs preferable. Although previous studies approved that STR instability is observed in many different tumors, there are only a few studies that have displayed the instability of InDels in tumoral tissues before. In this study, it was aimed to determine whether instability is observed in formalin-fixed paraffin-embedded breast and thyroid tumoral tissues at 36plex InDel Panel. A total of 47 cases, 26 of which were diagnosed as breast cancer and 21 as thyroid cancer, were included in the study. In 21 of 26 (80.76%) breast cancers mutational changes were observed, however only 6 of 21 (28.57%) thyroid carcinoma cases displayed instability.Moreover, in these six cases, mutations were detected at only 1 or 2 loci. The most common change in both tissues was loss of heterozygosity. These findings suggest that paraffin embedded tissues of thyroid tumor can be used in cases of forensic genetic identification, however paraffin embedded breast cancer tissues should be examined with care. In conclusion, low InDel mutation rates compared to STR instability, make InDel analysis from paraffin blocks suitable for forensic genetic identification. However, researchers should keep in mind that there may be differences between the profiles of the tumoral tissues taken as reference and the actual case. In addition, by incorporating additional markers such as SNPs and microhaplotypes with low mutation rates into the study alongside Indels, researchers can significantly enhance the discrimination power in identification processes.
Collapse
Affiliation(s)
- İpek Gürel
- Department of Science, Institute of Forensic Sciences and Legal Medicine, İstanbul University- Cerrahpaşa, İstanbul, Türkiye
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Haliç University, İstanbul, Türkiye
| | - Faruk Aşıcıoğlu
- Department of Medical Sciences, Institute of Forensic Sciences and Legal Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye.
| | - Gökhan Ersoy
- Department of Medical Sciences, Institute of Forensic Sciences and Legal Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye
| | - Özlem Bülbül
- Department of Science, Institute of Forensic Sciences and Legal Medicine, İstanbul University- Cerrahpaşa, İstanbul, Türkiye
| | - Tülin Öztürk
- Department of Medical Pathology, Cerrahpaşa Faculty of Medicine, İstanbul University- Cerrahpaşa, İstanbul, Türkiye
| | - Gönül Filoğlu
- Department of Science, Institute of Forensic Sciences and Legal Medicine, İstanbul University- Cerrahpaşa, İstanbul, Türkiye
| |
Collapse
|
2
|
Sharma V, Hazra T, Kandhol R, Sharma R, Arora S. Confirmation of buffalo tallow in anhydrous cow milk fat using gas liquid chromatography in tandem with species-specific polymerase chain reaction. INT J DAIRY TECHNOL 2017. [DOI: 10.1111/1471-0307.12390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vivek Sharma
- Dairy Chemistry Division; National Dairy Research Institute (NDRI); Karnal Haryana 132001 India
| | - Tanmay Hazra
- Dairy Chemistry Division; National Dairy Research Institute (NDRI); Karnal Haryana 132001 India
| | - Rakesh Kandhol
- Dairy Chemistry Division; National Dairy Research Institute (NDRI); Karnal Haryana 132001 India
| | - Rekha Sharma
- National Bureau of Animal Genetic Resources (NBAGR); Karnal Haryana 132001 India
| | - Sumit Arora
- Dairy Chemistry Division; National Dairy Research Institute (NDRI); Karnal Haryana 132001 India
| |
Collapse
|
3
|
Jung M, Uhl B, Kristiansen G, Dietrich D. Bisulfite Conversion of DNA from Tissues, Cell Lines, Buffy Coat, FFPE Tissues, Microdissected Cells, Swabs, Sputum, Aspirates, Lavages, Effusions, Plasma, Serum, and Urine. Methods Mol Biol 2017; 1589:139-159. [PMID: 26138988 DOI: 10.1007/7651_2015_260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Locus-specific analyses of DNA methylation patterns usually require a bisulfite conversion of the DNA, where cytosines are deaminated to uracils, while methylated and hydroxymethylated cytosines remain unaffected. The specific discrimination of hydroxymethylation and methylation can be achieved by introducing an oxidation of 5-hydroxymethylcytosines to 5-formylcytosines and subsequent bisulfite-mediated deamination of 5-formylcytosines.DNA methylation analysis of cell-free circulating DNA in liquid biopsies, i.e., blood samples (serum and plasma), urine, aspirates, bronchial lavages, pleural effusions, and ascites, is of great interest in clinical research. However, due to the generally low concentration of circulating cell-free DNA in body fluids, high volumes need to be analyzed. A reduction of this volume, e.g., by means of a polymer-mediated enrichment, is required in order to facilitate the bisulfite conversion. Further, these sample types usually contain a cellular fraction which is of additional interest and requires specific protocols for the sample preparation.Formalin-fixed, paraffin-embedded (FFPE) tissue is the most commonly used source for tissue-based clinical research. Due to degradation and covalent modifications of DNA in FFPE tissue samples, optimized protocols for the DNA preparation and bisulfite conversion are required.This chapter describes methods and protocols for the sample preparation and subsequent high-speed bisulfite conversion and DNA clean-up for several types of relevant samples, i.e., serum, plasma, urine, buffy coat, aspirates, sputum, lavages, effusions, ascites, swabs, fresh tissues, cell lines, FFPE tissues, and laser microdissected cells.Additionally, two real-time PCR assays for DNA quantification and quality control are described. The cytosine-free fragment (CFF) assay allows for the simultaneous quantification of bisulfite converted and total DNA and thus the determination of bisulfite conversion efficiency. The Mer9 real-time PCR assay amplifies the bisulfite converted sequence of the repetitive element Mer9 and enables the accurate quantification of minute DNA amounts, as present in microdissected cells and body fluids.
Collapse
Affiliation(s)
- Maria Jung
- Institute of Pathology, University Hospital Bonn (UKB), Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Barbara Uhl
- Institute of Pathology, University Hospital Bonn (UKB), Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn (UKB), Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Dimo Dietrich
- Institute of Pathology, University Hospital Bonn (UKB), Sigmund-Freud-Str. 25, 53127, Bonn, Germany.
| |
Collapse
|
4
|
PCR Analysis of IgH and TCR-γ Gene Rearrangements as a Confirmatory Diagnostic Tool for Lymphoproliferative Disorders. Indian J Hematol Blood Transfus 2014; 31:38-45. [PMID: 25548443 DOI: 10.1007/s12288-014-0387-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/01/2014] [Indexed: 10/25/2022] Open
Abstract
This study investigates PCR analysis of immunoglobulin heavy chain (IgH) and T cell receptor (TCR) gene rearrangements on paraffin-embedded tissue sections and bone marrow aspirates of patients suspected to have lymphoproliferative disorders but with inconclusive diagnosis in histopathological examination. 130 samples of patients with inconclusive immunohistochemistry results were evaluated for clonal rearrangement of IgH and TCR genes. Based on histopathology examination, the patients were divided into three groups: the first group without any definite diagnosis of lymphoproliferative disorders (60 cases, 46.2 %), the second group suspected to have a lymphoproliferative disorder but in favor of benign disorders (19 cases, 14.6 %) and the third group suspect to lymphoproliferative disorders but relatively in favor of malignant disorders (51 cases, 39.2 %). After DNA extraction and quality control, semi-nested PCR was performed using consensus primers for amplification of TCR-γ and CDR-3 regions of IgH genes. PCR products were analyzed after heteroduplex analysis using polyacrylamide gel electrophoresis, and were subject to silver staining. Totally, in over half of the cases (55.4 %), a monoclonal pattern was found in IgH or TCR-γ genes rearrangements. Monoclonal IgH gene rearrangement was detected in 48.1 % of patients, whereas monoclonal TCR-γ gene rearrangement was found in 33.6 % of them, which was not statistically significant (P = 0.008). Only in 32 patients (24.6 %) were the results of TCR-γ and IgH gene rearrangements consistent with respect to the presence (2.3 %) or absence (22.3 %) of monoclonality. Finally, PCR analysis of TCR-γ and IgH gene rearrangements led to definite diagnosis in 105 patients (80.8 %), and only 25 cases (19.2 %) remained inconclusive. Our results emphasize the usefulness of gene rearrangement study in cases without a definite diagnosis in immunohistochemistry studies. Multiple PCR analysis results when combined with patient's clinical course and immunohistochemistry can lead to early diagnosis and subsequent therapy.
Collapse
|
5
|
Dietrich D, Uhl B, Sailer V, Holmes EE, Jung M, Meller S, Kristiansen G. Improved PCR performance using template DNA from formalin-fixed and paraffin-embedded tissues by overcoming PCR inhibition. PLoS One 2013; 8:e77771. [PMID: 24155973 PMCID: PMC3796491 DOI: 10.1371/journal.pone.0077771] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/05/2013] [Indexed: 02/06/2023] Open
Abstract
Formalin-fixed and paraffin-embedded (FFPE) tissues represent a valuable source for biomarker studies and clinical routine diagnostics. However, they suffer from degradation of nucleic acids due to the fixation process. Since genetic and epigenetic studies usually require PCR amplification, this degradation hampers its use significantly, impairing PCR robustness or necessitating short amplicons. In routine laboratory medicine a highly robust PCR performance is mandatory for the clinical utility of genetic and epigenetic biomarkers. Therefore, methods to improve PCR performance using DNA from FFPE tissue are highly desired and of wider interest. The effect of template DNA derived from FFPE tissues on PCR performance was investigated by means of qPCR and conventional PCR using PCR fragments of different sizes. DNA fragmentation was analyzed via agarose gel electrophoresis. This study showed that poor PCR amplification was partly caused by inhibition of the DNA polymerase by fragmented DNA from FFPE tissue and not only due to the absence of intact template molecules of sufficient integrity. This PCR inhibition was successfully minimized by increasing the polymerase concentration, dNTP concentration and PCR elongation time thereby allowing for the robust amplification of larger amplicons. This was shown for genomic template DNA as well as for bisulfite-converted template DNA required for DNA methylation analyses. In conclusion, PCR using DNA from FFPE tissue suffers from inhibition which can be alleviated by adaptation of the PCR conditions, therefore allowing for a significant improvement of PCR performance with regard to variability and the generation of larger amplicons. The presented solutions to overcome this PCR inhibition are of tremendous value for clinical chemistry and laboratory medicine.
Collapse
Affiliation(s)
- Dimo Dietrich
- University Hospital Bonn (UKB), Institute of Pathology, Bonn, Germany
- * E-mail:
| | - Barbara Uhl
- University Hospital Bonn (UKB), Institute of Pathology, Bonn, Germany
| | - Verena Sailer
- University Hospital Bonn (UKB), Institute of Pathology, Bonn, Germany
| | - Emily Eva Holmes
- University Hospital Bonn (UKB), Institute of Pathology, Bonn, Germany
| | - Maria Jung
- University Hospital Bonn (UKB), Institute of Pathology, Bonn, Germany
| | - Sebastian Meller
- University Hospital Bonn (UKB), Institute of Pathology, Bonn, Germany
| | - Glen Kristiansen
- University Hospital Bonn (UKB), Institute of Pathology, Bonn, Germany
| |
Collapse
|
6
|
Sidorova JV, Biderman BV, Nikulina EE, Sudarikov AB. A simple and efficient method for DNA extraction from skin and paraffin-embedded tissues applicable to T-cell clonality assays. Exp Dermatol 2011; 21:57-60. [PMID: 21995276 DOI: 10.1111/j.1600-0625.2011.01375.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PCR-based clonality assay of rearranged T-cell receptor genes gamma and beta (TCRG and TCRB) in a number of cases could be essential to discriminate between cutaneous T-cell lymphomas and reactive lymphoproliferative lesions in the skin. However, extraction of good-quality DNA from skin specimens (especially formalin-fixed paraffin-embedded) remains a challenge. Common procedures, being labour-intensive and time-consuming and requiring toxic solvents such as phenol and chloroform, still may end up with DNA sample of insufficient quality. We herewith present a simple and efficient method for DNA isolation based on ammonia extraction of tissue, followed by neutralization and simultaneous salting out of proteins with acetic acid. We have analysed 30 samples - 24 fresh (16 skin, two spleen and six lymph node) and six paraffin-embedded. Standard procedure (proteinase K digestion, followed by phenol/chloroform extraction) has been carried out simultaneously. We observed good PCR signal for TCRG rearrangements in 30 samples processed with the new protocol and only in 20 extracted with proteinase K/phenol/chloroform. For TCRB, the success rate was 29 of 30 with the new protocol, compared to 11 of 30 with conventional protocol. The proposed method of DNA extraction should improve the value of T-cell clonality assay, because insufficient DNA quality and quantity may bias analysis towards monoclonality and therefore cause false-positive results.
Collapse
Affiliation(s)
- Julia V Sidorova
- Department of Molecular Hematology, National Hematology Research Center, Moscow, Russia
| | | | | | | |
Collapse
|
7
|
Wilkins BS. Pitfalls in lymphoma pathology: avoiding errors in diagnosis of lymphoid tissues. J Clin Pathol 2011; 64:466-76. [PMID: 21325143 DOI: 10.1136/jcp.2010.080846] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The complexity involved in the histological interpretation of lymph nodes and other lymphoid tissue specimens suspected of harbouring lymphoma is underappreciated. As with other histology specimens, the quality of sections and background information are crucial but so, increasingly, is the appropriate use of immunocytochemistry and a variety of molecular analyses. Within the UK National Health Service, progressive regional centralisation is ongoing, to ensure access to specialist expertise and a full range of testing beyond traditional stains. This is to be welcomed but there remains a need to maintain skills in smaller district hospitals, to ensure lymphoma recognition in unexpected circumstances, to permit clinically useful interim diagnoses when needed urgently and to sustain training in haematopathology among junior pathologists. In this review a range of potential pitfalls in lymphoid tissue pathology is outlined, arising at all stages from specimen preparation to reporting. Knowledge of such pitfalls, some of which are common while others are rare but of vital clinical importance, should help increase confidence in lymphoma diagnosis among histopathologists.
Collapse
Affiliation(s)
- Bridget S Wilkins
- Histopathology Department, Second Floor, North Wing, St Thomas' Hospital and King's College, London SE1 7EH, UK.
| |
Collapse
|
8
|
Weiss A, Klopfleisch R, Gruber A. T-Cell Receptor γ Chain Variable and Joining Region Genes of Subgroup 1 are Clonally Rearranged in Feline B- and T-Cell Lymphoma. J Comp Pathol 2011; 144:123-34. [DOI: 10.1016/j.jcpa.2010.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 05/27/2010] [Accepted: 08/05/2010] [Indexed: 11/28/2022]
|
9
|
Patel KP, Pan Q, Wang Y, Maitta RW, Du J, Xue X, Lin J, Ratech H. Comparison of BIOMED-2 versus laboratory-developed polymerase chain reaction assays for detecting T-cell receptor-gamma gene rearrangements. J Mol Diagn 2010; 12:226-37. [PMID: 20181819 DOI: 10.2353/jmoldx.2010.090042] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Detecting clonal T-cell receptor (TCR)-gamma gene rearrangements (GRs) is an important adjunct test for diagnosing T-cell lymphoma. We compared a recently described assay (BIOMED-2 protocol), which targets multiple variable (V) gene segments in two polymerase chain reaction (PCR) reactions (multi-V), with a frequently referenced assay that targets a single V gene segment in four separate PCR reactions (mono-V). A total of 144 consecutive clinical DNA samples were prospectively tested for T-cell clonality by PCR using laboratory-developed mono-V and commercial multi-V primer sets for TCR-gamma GR. The combination of TCR-beta, mono-V TCR-gamma and multi-V TCR-gamma detected more clonal cases (68/144, 47%) than any individual PCR assay. We detected clonal TCR-beta GR in 47/68 (69%) cases. Using either mono-V or multi-V TCR-gamma primers, the sensitivities for detecting clonality were 52/68 (76%) or 51/68 (75%). Using both mono-V and multi-V TCR-gamma primers improved the sensitivity for detecting clonality, 60/68 (88%). Combining either mono-V or multi-V TCR-gamma primers with TCR-beta primers also improved the sensitivity, 64/68 (94%). Significantly, TCR-gamma V11 GRs could only be detected using the mono-V-PCR primers. We conclude that using more than one T-cell PCR assay can enhance the overall sensitivity for detecting T-cell clonality.
Collapse
Affiliation(s)
- Keyur P Patel
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, 111 E. 210th Street, Bronx, NY 10467, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
FUKUSHIMA K, OHNO K, KOSHINO-GOTO Y, UCHIDA K, NOMURA K, TAKAHASHI M, NAKASHIMA K, FUJINO Y, TSUJIMOTO H. Sensitivity for the Detection of a Clonally Rearranged Antigen Receptor Gene in Endoscopically Obtained Biopsy Specimens from Canine Alimentary Lymphoma. J Vet Med Sci 2009; 71:1673-6. [DOI: 10.1292/jvms.001673] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Kenjiro FUKUSHIMA
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Koichi OHNO
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Yuko KOSHINO-GOTO
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Kazuyuki UCHIDA
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | | | - Masashi TAKAHASHI
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Ko NAKASHIMA
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Yasuhito FUJINO
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Hajime TSUJIMOTO
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
11
|
Nambiar M, Choudhary B, Rao CR, Raghavan SC. Amplification of chromosomal translocation junctions from paraffin-embedded tissues of follicular lymphoma patients. Biomed Mater 2008; 3:034103. [DOI: 10.1088/1748-6041/3/3/034103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|