1
|
Jia YL, Geng SS, Du F, Xu YS, Wang LR, Sun XM, Wang QZ, Li Q. Progress of metabolic engineering for the production of eicosapentaenoic acid. Crit Rev Biotechnol 2021; 42:838-855. [PMID: 34779326 DOI: 10.1080/07388551.2021.1971621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Eicosapentaenoic Acid (EPA) is an essential ω-3 polyunsaturated fatty acid for human health. Currently, high-quality EPA production is largely dependent on the extraction of fish oil, but this unsustainable approach cannot meet its rising market demand. Biotechnological approaches for EPA production from microorganisms have received increasing attention due to their suitability for large-scale production and independence of the seasonal or climate restrictions. This review summarizes recent research on different microorganisms capable of producing EPA, such as microalgae, bacteria, and fungi, and introduces the different EPA biosynthesis pathways. Notably, some novel engineering strategies have been applied to endow and improve the abilities of microorganisms to synthesize EPA, including the construction and optimization of the EPA biosynthesis pathway, an increase in the acetyl-CoA pool supply, the increase of NADPH and the inhibition of competing pathways. This review aims to provide an updated summary of EPA production.
Collapse
Affiliation(s)
- Yu-Lei Jia
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Shan-Shan Geng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Fei Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Ling-Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Qing-Zhuo Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Qi Li
- College of Life Sciences, Sichuan Normal University, Chengdu, People's Republic of China
| |
Collapse
|
2
|
Alvarez HM, Hernández MA, Lanfranconi MP, Silva RA, Villalba MS. Rhodococcus as Biofactories for Microbial Oil Production. Molecules 2021; 26:molecules26164871. [PMID: 34443455 PMCID: PMC8401914 DOI: 10.3390/molecules26164871] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/20/2023] Open
Abstract
Bacteria belonging to the Rhodococcus genus are frequent components of microbial communities in diverse natural environments. Some rhodococcal species exhibit the outstanding ability to produce significant amounts of triacylglycerols (TAG) (>20% of cellular dry weight) in the presence of an excess of the carbon source and limitation of the nitrogen source. For this reason, they can be considered as oleaginous microorganisms. As occurs as well in eukaryotic single-cell oil (SCO) producers, these bacteria possess specific physiological properties and molecular mechanisms that differentiate them from other microorganisms unable to synthesize TAG. In this review, we summarized several of the well-characterized molecular mechanisms that enable oleaginous rhodococci to produce significant amounts of SCO. Furthermore, we highlighted the ability of these microorganisms to degrade a wide range of carbon sources coupled to lipogenesis. The qualitative and quantitative oil production by rhodococci from diverse industrial wastes has also been included. Finally, we summarized the genetic and metabolic approaches applied to oleaginous rhodococci to improve SCO production. This review provides a comprehensive and integrating vision on the potential of oleaginous rhodococci to be considered as microbial biofactories for microbial oil production.
Collapse
|
3
|
Chang L, Lu H, Chen H, Tang X, Zhao J, Zhang H, Chen YQ, Chen W. Lipid metabolism research in oleaginous fungus Mortierella alpina: Current progress and future prospects. Biotechnol Adv 2021; 54:107794. [PMID: 34245810 DOI: 10.1016/j.biotechadv.2021.107794] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/11/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022]
Abstract
The oleaginous fungus Mortierella alpina has distinct advantages in long-chain PUFAs production, and it is the only source for dietary arachidonic acid (ARA) certificated by FDA and European Commission. This review provides an overall introduction to M. alpina, including its major research methods, key factors governing lipid biosynthesis, metabolic engineering and omics studies. Currently, the research interests in M. alpina focus on improving lipid yield and fatty acid desaturation degree by enhancing fatty acid precursors and the reducing power NADPH, and genetic manipulation on PUFAs synthetic pathways is carried to optimise fatty acid composition. Besides, multi-omics studies have been applied to elucidate the global regulatory mechanism of lipogenesis in M. alpina. However, research challenges towards achieving a lipid cell factory lie in strain breeding and cost control due to the coenocytic mycelium, long fermentation period and insufficient conversion rate from carbon to lipid. We also proposed future research goals based on a multilevel regulating strategy: obtaining ideal chassis by directional evolution and high-throughput screening; rewiring central carbon metabolism and inhibiting competitive pathways by multi-gene manipulation system to enhance carbon to lipid conversion rate; optimisation of protein function based on post-translational modification; application of dynamic fermentation strategies suitable for different fermentation phases. By reviewing the comprehensive research progress of this oleaginous fungus, we aim to further comprehend the fungal lipid metabolism and provide reference information and guidelines for the exploration of microbial oils from the perspectives of fundamental research to industrial application.
Collapse
Affiliation(s)
- Lulu Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Hengqian Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, PR China; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
4
|
Chang L, Tang X, Lu H, Zhang H, Chen YQ, Chen H, Chen W. Role of Adenosine Monophosphate Deaminase during Fatty Acid Accumulation in Oleaginous Fungus Mortierella alpina. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9551-9559. [PMID: 31379157 DOI: 10.1021/acs.jafc.9b03603] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In oleaginous micro-organisms, nitrogen limitation activates adenosine monophosphate deaminase (AMPD) and promotes lipogenesis via the inhibition of isocitrate dehydrogenase. We found that the overexpression of homologous AMPD in Mortierella alpina favored lipid synthesis over cell growth. Total fatty acid content in the recombinant strain was 15.0-34.3% higher than that in the control, even though their biomass was similar. During the early fermentation stage, the intracellular AMP level reduced by 40-60%, together with a 1.9-2.7-fold increase in citrate content compared with the control, therefore provided more precursors for fatty acid synthesis. Moreover, the decreased AMP level resulted in metabolic reprogramming, reflected by the blocked TCA cycle and reduction of amino acids, distributing more carbon to lipid synthesis pathways. By coupling the energy balance with lipogenesis, this study provides new insights into cell metabolism under nitrogen-limited conditions and targets the regulation of fatty acid accumulation in oleaginous micro-organisms.
Collapse
Affiliation(s)
| | | | | | - Hao Zhang
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch , Wuxi , Jiangsu 214122 , P. R. China
| | - Yong Q Chen
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch , Wuxi , Jiangsu 214122 , P. R. China
| | | | - Wei Chen
- Beijing Innovation Centre of Food Nutrition and Human Health , Beijing Technology and Business University (BTBU) , Beijing 100048 , P. R. China
| |
Collapse
|
5
|
Mamani LDG, Magalhães AI, Ruan Z, Carvalho JCD, Soccol CR. Industrial production, patent landscape, and market trends of arachidonic acid-rich oil of Mortierella alpina. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biori.2019.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Qasem RJ. Single-tube biosynthesis and extraction of U-13C and U-14C arachidonic acid from microcultures of Mortierella alpina for in vivo pharmacology and metabolic tracing studies. J Pharmacol Toxicol Methods 2018; 92:1-12. [DOI: 10.1016/j.vascn.2018.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/22/2018] [Accepted: 02/01/2018] [Indexed: 11/24/2022]
|
7
|
Production of polyunsaturated single cell oils possessing antimicrobial and anticancer properties. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1176-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
8
|
Ye C, Xu N, Chen H, Chen YQ, Chen W, Liu L. Reconstruction and analysis of a genome-scale metabolic model of the oleaginous fungus Mortierella alpina. BMC SYSTEMS BIOLOGY 2015; 9:1. [PMID: 25582171 PMCID: PMC4301621 DOI: 10.1186/s12918-014-0137-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 12/11/2014] [Indexed: 12/30/2022]
Abstract
Background Mortierella alpina is an oleaginous fungus used in the industrial scale production of arachidonic acid (ARA). In order to investigate the metabolic characteristics at a systems level and to explore potential strategies for enhanced lipid production, a genome-scale metabolic model of M. alpina was reconstructed. Results This model included 1106 genes, 1854 reactions and 1732 metabolites. On minimal growth medium, 86 genes were identified as essential, whereas 49 essential genes were identified on yeast extract medium. A series of sequential desaturase and elongase catalysed steps are involved in the synthesis of polyunsaturated fatty acids (PUFAs) from acetyl-CoA precursors, with concomitant NADPH consumption, and these steps were investigated in this study. Oxygen is known to affect the degree of unsaturation of PUFAs, and robustness analysis determined that an oxygen uptake rate of 2.0 mmol gDW−1 h−1 was optimal for ARA accumulation. The flux of 53 reactions involving NADPH was significantly altered at different ARA levels. Of these, malic enzyme (ME) was confirmed as a key component in ARA production and NADPH generation. When using minimization of metabolic adjustment, a knock-out of ME led to a 38.28% decrease in ARA production. Conclusions The simulation results confirmed the model as a useful tool for future research on the metabolism of PUFAs. Electronic supplementary material The online version of this article (doi:10.1186/s12918-014-0137-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China. .,The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Nan Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China. .,The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China. .,Synergistic Innovation Center for Food Safety and Nutrition, School of Food Science and technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China. .,Synergistic Innovation Center for Food Safety and Nutrition, School of Food Science and technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China. .,Synergistic Innovation Center for Food Safety and Nutrition, School of Food Science and technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China. .,The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
9
|
Leman J. Oleaginous microorganisms: an assessment of the potential. ADVANCES IN APPLIED MICROBIOLOGY 1997; 43:195-243. [PMID: 9097415 DOI: 10.1016/s0065-2164(08)70226-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- J Leman
- Institute of Food Biotechnology, University of Agriculture and Technology, Olsztyn, Poland
| |
Collapse
|
10
|
Abstract
Eicosapentaenoic acid EPA has been shown to be of major importance in the prevention and treatment of a range of human diseases and disorders. At present fish oil is the only source of EPA that is considered unattractive because it contains substantial amounts of undesirable fatty acids and cholesterol. Consequently, alternative sources of EPA are being sought, especially from algae and from fungi of the order Mucorales. This review presents information about EPA producing microorganisms, data on the production and recovery aspects along with the potential of microorganisms as commercial sources of EPA.
Collapse
Affiliation(s)
- P Bajpai
- Chemical Engineering Division, Thapar Corporate Research & Development Centre, Patiala, India
| | | |
Collapse
|