1
|
6S-Like scr3559 RNA Affects Development and Antibiotic Production in Streptomyces coelicolor. Microorganisms 2021; 9:microorganisms9102004. [PMID: 34683325 PMCID: PMC8539372 DOI: 10.3390/microorganisms9102004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Regulatory RNAs control a number of physiological processes in bacterial cells. Here we report on a 6S-like RNA transcript (scr3559) that affects both development and antibiotic production in Streptomyces coelicolor. Its expression is enhanced during the transition to stationary phase. Strains that over-expressed the scr3559 gene region exhibited a shortened exponential growth phase in comparison with a control strain; accelerated aerial mycelium formation and spore maturation; alongside an elevated production of actinorhodin and undecylprodigiosin. These observations were supported by LC-MS analyses of other produced metabolites, including: germicidins, desferrioxamines, and coelimycin. A subsequent microarray differential analysis revealed increased expression of genes associated with the described morphological and physiological changes. Structural and functional similarities between the scr3559 transcript and 6S RNA, and its possible employment in regulating secondary metabolite production are discussed.
Collapse
|
2
|
Peng M, Cao X, Tang Y, Li H, Ma X, Liu Z. Large-scale identification of trans-translation substrates targeted by tmRNA in Aeromonas veronii. Microb Pathog 2020; 145:104226. [PMID: 32353577 DOI: 10.1016/j.micpath.2020.104226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 10/24/2022]
Abstract
Transfer-messenger RNA (tmRNA) is ubiquitous in bacteria, acting as the core component for the trans-translation system that contributes to label the aberrantly synthesized peptides for degradation and to release the stalled ribosomes. Deletion of tmRNA causes a variety of phenotypes related to important physiological processes in bacteria. To illustrate the molecular mechanism of the versatility of tmRNA in aquatic pathogen Aeromonas veronii, we mutated the C-terminal nucleotides of tmRNA (MutmRNA) for encoding a tag containing six histidine residues (His6tag), so as to capture and enrich the trans-translation substrates from the cell lysates through a Ni2+-NTA affinity chromatograph. The results showed that the concentrated substrates were detected as distinct and specific bands in western blotting using anti-His antibody, demonstrating that specific defective mRNAs were frequently and intensively rescued by trans-translation during the translation process in A. veronii. The substrates were analyzed by LC-MS/MS and further identified by searching a theoretically constructed database specific for A. veronii. Total of 24 potential substrates were identified, with various functions involved in metabolism, as well as structure and signal-based cellular events. Among the identified substrates, PspA and AsmA were labeled by Flag, and expressed in the presence of the modified trans-translation system in E. coli. Their labelings with MutmRNA were validated by purification through Ni2+-NTA column followed by western blotting using anti-Flag antibody. This study provided the most abundant set of endogenous targets for tmRNA in A. veronii, and facilitated further investigations about the molecular mechanism and signal pathway of tmRNA-mediated trans-translation.
Collapse
Affiliation(s)
- Muzhi Peng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 570228, Haikou, China
| | - Xin Cao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 570228, Haikou, China
| | - Yanqiong Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 570228, Haikou, China
| | - Hong Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 570228, Haikou, China
| | - Xiang Ma
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 570228, Haikou, China.
| | - Zhu Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 570228, Haikou, China.
| |
Collapse
|
3
|
Čihák M, Kameník Z, Šmídová K, Bergman N, Benada O, Kofroňová O, Petříčková K, Bobek J. Secondary Metabolites Produced during the Germination of Streptomyces coelicolor. Front Microbiol 2017; 8:2495. [PMID: 29326665 PMCID: PMC5733532 DOI: 10.3389/fmicb.2017.02495] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/30/2017] [Indexed: 11/16/2022] Open
Abstract
Spore awakening is a series of actions that starts with purely physical processes and continues via the launching of gene expression and metabolic activities, eventually achieving a vegetative phase of growth. In spore-forming microorganisms, the germination process is controlled by intra- and inter-species communication. However, in the Streptomyces clade, which is capable of developing a plethora of valuable compounds, the chemical signals produced during germination have not been systematically studied before. Our previously published data revealed that several secondary metabolite biosynthetic genes are expressed during germination. Therefore, we focus here on the secondary metabolite production during this developmental stage. Using high-performance liquid chromatography-mass spectrometry, we found that the sesquiterpenoid antibiotic albaflavenone, the polyketide germicidin A, and chalcone are produced during germination of the model streptomycete, S. coelicolor. Interestingly, the last two compounds revealed an inhibitory effect on the germination process. The secondary metabolites originating from the early stage of microbial growth may coordinate the development of the producer (quorum sensing) and/or play a role in competitive microflora repression (quorum quenching) in their nature environments.
Collapse
Affiliation(s)
- Matouš Čihák
- First Faculty of Medicine, Institute of Immunology and Microbiology, Charles University, Prague, Czechia
| | - Zdeněk Kameník
- Institute of Microbiology, The Czech Academy of Sciences, Prague, Czechia
| | - Klára Šmídová
- First Faculty of Medicine, Institute of Immunology and Microbiology, Charles University, Prague, Czechia.,Institute of Microbiology, The Czech Academy of Sciences, Prague, Czechia
| | - Natalie Bergman
- Chemistry Department, Faculty of Science, J. E. Purkinje University, Ústí nad Labem, Czechia
| | - Oldřich Benada
- Institute of Microbiology, The Czech Academy of Sciences, Prague, Czechia.,Chemistry Department, Faculty of Science, J. E. Purkinje University, Ústí nad Labem, Czechia
| | - Olga Kofroňová
- Institute of Microbiology, The Czech Academy of Sciences, Prague, Czechia
| | - Kateřina Petříčková
- First Faculty of Medicine, Institute of Immunology and Microbiology, Charles University, Prague, Czechia
| | - Jan Bobek
- First Faculty of Medicine, Institute of Immunology and Microbiology, Charles University, Prague, Czechia.,Institute of Microbiology, The Czech Academy of Sciences, Prague, Czechia.,Chemistry Department, Faculty of Science, J. E. Purkinje University, Ústí nad Labem, Czechia
| |
Collapse
|
4
|
Bobek J, Šmídová K, Čihák M. A Waking Review: Old and Novel Insights into the Spore Germination in Streptomyces. Front Microbiol 2017; 8:2205. [PMID: 29180988 PMCID: PMC5693915 DOI: 10.3389/fmicb.2017.02205] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/26/2017] [Indexed: 01/02/2023] Open
Abstract
The complex development undergone by Streptomyces encompasses transitions from vegetative mycelial forms to reproductive aerial hyphae that differentiate into chains of single-celled spores. Whereas their mycelial life – connected with spore formation and antibiotic production – is deeply investigated, spore germination as the counterpoint in their life cycle has received much less attention. Still, germination represents a system of transformation from metabolic zero point to a new living lap. There are several aspects of germination that may attract our attention: (1) Dormant spores are strikingly well-prepared for the future metabolic restart; they possess stable transcriptome, hydrolytic enzymes, chaperones, and other required macromolecules stabilized in a trehalose milieu; (2) Germination itself is a specific sequence of events leading to a complete morphological remodeling that include spore swelling, cell wall reconstruction, and eventually germ tube emergences; (3) Still not fully unveiled are the strategies that enable the process, including a single cell’s signal transduction and gene expression control, as well as intercellular communication and the probability of germination across the whole population. This review summarizes our current knowledge about the germination process in Streptomyces, while focusing on the aforementioned points.
Collapse
Affiliation(s)
- Jan Bobek
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia.,Chemistry Department, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czechia.,Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Klára Šmídová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia.,Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Matouš Čihák
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
5
|
Sun N, Wang ZB, Wu HP, Mao XM, Li YQ. Construction of over-expression shuttle vectors in Streptomyces. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-011-0408-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
6
|
Andini N, Nash KA. Expression of tmRNA in mycobacteria is increased by antimicrobial agents that target the ribosome. FEMS Microbiol Lett 2011; 322:172-9. [PMID: 21718348 DOI: 10.1111/j.1574-6968.2011.02350.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The specialized RNA, tmRNA, is a central component of prokaryote trans-translation; a process that salvages stalled translational complexes. Evidence from other bacteria suggested that exposure to ribosome inhibitors elevated tmRNA levels, although it was unclear whether such changes resulted from increased tmRNA synthesis. Consequently, this study was initiated to determine the effect of ribosome inhibitors on the expression of tmRNA in mycobacteria. Exposure of Mycobacterium smegmatis to ribosome-targeting antimicrobial agents was associated with increased levels of the tmRNA precursor, pre-tmRNA, and mature tmRNA. For example, exposure to 16 μg mL⁻¹ erythromycin for 3 h increased pre-tmRNA and tmRNA by 18- and 6-fold, respectively. Equivalent results were found following exposure of Mycobacterium bovis BCG to streptomycin. Exposure to antimicrobial agents with nonribosome targets did not affect tmRNA levels. The increased tmRNA levels were associated with increased output from the ssrA promoter, which controls tmRNA transcription, without evidence of a change in tmRNA degradation. These results suggest that the upregulation of tmRNA expression was an important response of bacteria to exposure to ribosome-inhibiting antimicrobial agents.
Collapse
Affiliation(s)
- Nadya Andini
- Department of Pathology and Laboratory Medicine, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | |
Collapse
|
7
|
Barends S, Kraal B, van Wezel GP. The tmRNA-tagging mechanism and the control of gene expression: a review. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:233-46. [PMID: 21957008 DOI: 10.1002/wrna.48] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The tmRNA-mediated trans-translation system is a unique quality control system in eubacteria that combines translational surveillance with the rescue of stalled ribosomes. During trans-translation, the chimeric tmRNA molecule--which acts as both tRNA and mRNA--is delivered to the ribosomal A site by a ribonucleoprotein complex of SmpB and EF-Tu-GTP, allowing the stalled ribosome to switch template and resume translation on a small coding sequence inside the tmRNA molecule. As a result, the aberrant protein becomes tagged by a sequence that is a target for proteolytic degradation. Thus, the system elegantly combines ribosome recycling with a clean-up function when triggered by truncated transcripts or rare codons. In addition, recent observations point to a specific regulation of the translation of a small number of genes by tmRNA-mediated inhibition or stimulation. In this review, we discuss the most prominent biochemical and structural aspects of trans-translation and then focus on the specific role of tmRNA in stress management and cell-cycle control of morphologically complex bacteria.
Collapse
Affiliation(s)
- Sharief Barends
- ProteoNic, Niels Bohrweg 11-13, 2333 CA Leiden, The Netherlands
| | | | | |
Collapse
|
8
|
Barends S, Zehl M, Bialek S, de Waal E, Traag BA, Willemse J, Jensen ON, Vijgenboom E, van Wezel GP. Transfer-messenger RNA controls the translation of cell-cycle and stress proteins in Streptomyces. EMBO Rep 2009; 11:119-25. [PMID: 20019758 DOI: 10.1038/embor.2009.255] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 10/29/2009] [Accepted: 11/02/2009] [Indexed: 11/09/2022] Open
Abstract
The transfer-messenger RNA (tmRNA)-mediated trans-translation mechanism is highly conserved in bacteria and functions primarily as a system for the rescue of stalled ribosomes and the removal of aberrantly produced proteins. Here, we show that in the antibiotic-producing soil bacterium Streptomyces coelicolor, trans-translation has a specialized role in stress management. Analysis of proteins that were carboxy-terminally His(8)-tagged by a recombinant tmRNA identified only 10 targets, including the stress proteins: DnaK heat-shock protein 70, thiostrepton-induced protein A, universal stress protein A, elongation factor Tu3, and the cell-cycle control proteins DasR, SsgA, SsgF and SsgR. Although tmRNA-tagged proteins are degraded swiftly, the translation of dnaK and dasR messenger RNAs (mRNAs) depends fully on tmRNA, whereas transcription is unaffected. The data unveil a surprisingly dedicated functionality for tmRNA, promoting the translation of the same mRNA it targets, at the expense of sacrificing the first nascent protein. In streptomycetes, tmRNA has evolved into a dedicated task force that ensures the instantaneous response to the exposure to stress.
Collapse
Affiliation(s)
- Sharief Barends
- Microbial Development, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Palecková P, Bobek J, Mikulík K. tmRNA of Streptomyces collinus and Streptomyces griseus during the growth and in the presence of antibiotics. Microb Biotechnol 2009; 2:114-22. [PMID: 21261886 PMCID: PMC3815426 DOI: 10.1111/j.1751-7915.2008.00066.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Streptomycetes are soil microorganisms with the potential to produce a broad spectrum of secondary metabolities. The production of antibiotics is accompanied by a decrease in protein synthesis, which raises the question of how these bacteria survived the transition from the primary to the secondary metabolism. Translating ribosomes incapable to properly elongate or terminate polypeptide chain activate bacterial trans‐translation system. Abundance and stability of the tmRNA during growth of Streptomyces collinus and Streptomyces griseus producing kirromycin and streptomycin, respectively, was analysed. The level of tmRNA is mostly proportional to the activity of the translational system. We demonstrate that the addition of sub‐inhibitory concentrations of produced antibiotics to the cultures from the beginning of the exponential phase of growth leads to an increase in tmRNA levels and to an incorporation of amino acids into the tag‐peptides at trans‐translation of stalled ribosomes. These findings suggest that produced antibiotics induce tmRNA that facilitate reactivation of stalled complex of ribosomes and maintain viability. The effect of antibiotics that inhibit the cell‐wall turnover, DNA, RNA or protein synthesis on the level of tmRNA was examined. Antibiotics interfering with ribosomal target sites are more effective at stimulation of the tmRNA level in streptomycetes examined than those affecting the synthesis of DNA, RNA or the cell wall.
Collapse
Affiliation(s)
- Petra Palecková
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | |
Collapse
|
10
|
Mikulík K, Palečková P, Felsberg J, Bobek J, Zídková J, Halada P. SsrA
genes of streptomycetes and association of proteins to the tmRNA during development and cellular differentiation. Proteomics 2008; 8:1429-41. [DOI: 10.1002/pmic.200700560] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
tmRNA abundance inStreptomyces aureofaciens, S. griseus andS. collinus under stress-inducing conditions. Folia Microbiol (Praha) 2007; 52:463-70. [DOI: 10.1007/bf02932105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|