1
|
Coll-Marqués JM, Bäuerl C, Zúñiga M, Pérez-Martínez G. Differences in the expression of cell envelope proteinases (CEP) in two Lactobacillus paracasei probiotic strains. FEMS Microbiol Lett 2021; 367:5861318. [PMID: 32573688 DOI: 10.1093/femsle/fnaa102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/22/2020] [Indexed: 12/30/2022] Open
Abstract
Proteinase PrtP (EC:3.4.21.96) is a cell envelope proteinase (CEP) highly expressed in the probiotic strain Lactobacillus paracasei BL312(VSL#3) that accounts for its anti-inflammatory properties. The main aim of this work is to understand differences in CEP expression between this strain and L. paracasei BL23. Hence, differences in the regulation by amino acid sources of four proteinase related genes (prtP, prsA, prtR1 and prtR2) were determined by RT-qPCR in BL312(VSL#3) and BL23 using as a reference BL368, a BL23 derepressed mutant lacking the response regulator (RR) PrcR. BL312(VSL#3) showed greater expression of prtP (2- to 3-fold) than BL23, and prtP was highly repressed by peptone in both strains. Two other putative CEP genes, prtR1 and prtR2, showed a low expression profile. Interestingly, when the prsA-prtP promoter region from both strains, and deleted mutants, were cloned in vector pT1GR, expression of the gfp and mrfp fluorescent reporters was always repressed in BL23 (high or low peptone) and derepressed in BL368, revealing an interesting mechanism of regulation affecting specifically to this promoter. In conclusion, BL312(VSL#3) has higher expression of prtP and other CEP related genes than BL23, that could respond to a natural deregulation in this strain, possibly independent from the RR PrcR.
Collapse
Affiliation(s)
- José María Coll-Marqués
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Spanish National Research Council (CSIC), Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain
| | - Christine Bäuerl
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Spanish National Research Council (CSIC), Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain
| | - Manuel Zúñiga
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Spanish National Research Council (CSIC), Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain
| | - Gaspar Pérez-Martínez
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Spanish National Research Council (CSIC), Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain
| |
Collapse
|
2
|
Monedero V, Revilla-Guarinos A, Zúñiga M. Physiological Role of Two-Component Signal Transduction Systems in Food-Associated Lactic Acid Bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2017; 99:1-51. [PMID: 28438266 DOI: 10.1016/bs.aambs.2016.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Two-component systems (TCSs) are widespread signal transduction pathways mainly found in bacteria where they play a major role in adaptation to changing environmental conditions. TCSs generally consist of sensor histidine kinases that autophosphorylate in response to a specific stimulus and subsequently transfer the phosphate group to their cognate response regulators thus modulating their activity, usually as transcriptional regulators. In this review we present the current knowledge on the physiological role of TCSs in species of the families Lactobacillaceae and Leuconostocaceae of the group of lactic acid bacteria (LAB). LAB are microorganisms of great relevance for health and food production as the group spans from starter organisms to pathogens. Whereas the role of TCSs in pathogenic LAB (most of them belonging to the family Streptococcaceae) has focused the attention, the roles of TCSs in commensal LAB, such as most species of Lactobacillaceae and Leuconostocaceae, have been somewhat neglected. However, evidence available indicates that TCSs are key players in the regulation of the physiology of these bacteria. The first studies in food-associated LAB showed the involvement of some TCSs in quorum sensing and production of bacteriocins, but subsequent studies have shown that TCSs participate in other physiological processes, such as stress response, regulation of nitrogen metabolism, regulation of malate metabolism, and resistance to antimicrobial peptides, among others.
Collapse
Affiliation(s)
- Vicente Monedero
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Paterna, Spain
| | | | - Manuel Zúñiga
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Paterna, Spain
| |
Collapse
|
3
|
Alcántara C, Bäuerl C, Revilla-Guarinos A, Pérez-Martínez G, Monedero V, Zúñiga M. Peptide and amino acid metabolism is controlled by an OmpR-family response regulator in Lactobacillus casei. Mol Microbiol 2016; 100:25-41. [PMID: 26711440 DOI: 10.1111/mmi.13299] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2015] [Indexed: 01/14/2023]
Abstract
A Lactobacillus casei BL23 strain defective in an OmpR-family response regulator encoded by LCABL_18980 (PrcR, RR11), showed enhanced proteolytic activity caused by overexpression of the gene encoding the proteinase PrtP. Transcriptomic analysis revealed that, in addition to prtP expression, PrcR regulates genes encoding peptide and amino acid transporters, intracellular peptidases and amino acid biosynthetic pathways, among others. Binding of PrcR to twelve promoter regions of both upregulated and downregulated genes, including its own promoter, was demonstrated by electrophoretic mobility shift assays showing that PrcR can act as a transcriptional repressor or activator. Phosphorylation of PrcR increased its DNA binding activity and this effect was abolished after replacement of the phosphorylatable residue Asp-52 by alanine. Comparison of the transcript levels in cells grown in the presence or absence of tryptone in the growth medium revealed that PrcR activity responded to the presence of a complex amino acid source in the growth medium. We conclude that the PrcR plays a major role in the control of the peptide and amino acid metabolism in L. casei BL23. Orthologous prcR genes are present in most members of the Lactobacillaceae and Leuconostocaceae families. We hypothesize that they play a similar role in these bacterial groups.
Collapse
Affiliation(s)
- Cristina Alcántara
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), C/Agustín Escardino Benlloch 7, 46980, Paterna, Valencia, Spain
| | - Christine Bäuerl
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), C/Agustín Escardino Benlloch 7, 46980, Paterna, Valencia, Spain
| | - Ainhoa Revilla-Guarinos
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), C/Agustín Escardino Benlloch 7, 46980, Paterna, Valencia, Spain
| | - Gaspar Pérez-Martínez
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), C/Agustín Escardino Benlloch 7, 46980, Paterna, Valencia, Spain
| | - Vicente Monedero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), C/Agustín Escardino Benlloch 7, 46980, Paterna, Valencia, Spain
| | - Manuel Zúñiga
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), C/Agustín Escardino Benlloch 7, 46980, Paterna, Valencia, Spain
| |
Collapse
|
4
|
Vogel RF, Pavlovic M, Ehrmann MA, Wiezer A, Liesegang H, Offschanka S, Voget S, Angelov A, Böcker G, Liebl W. Genomic analysis reveals Lactobacillus sanfranciscensis as stable element in traditional sourdoughs. Microb Cell Fact 2011; 10 Suppl 1:S6. [PMID: 21995419 PMCID: PMC3231932 DOI: 10.1186/1475-2859-10-s1-s6] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Sourdough has played a significant role in human nutrition and culture for thousands of years and is still of eminent importance for human diet and the bakery industry. Lactobacillus sanfranciscensis is the predominant key bacterium in traditionally fermented sourdoughs. The genome of L. sanfranciscensis TMW 1.1304 isolated from an industrial sourdough fermentation was sequenced with a combined Sanger/454-pyrosequencing approach followed by gap closing by walking on fosmids. The sequencing data revealed a circular chromosomal sequence of 1,298,316 bp and two additional plasmids, pLS1 and pLS2, with sizes of 58,739 bp and 18,715 bp, which are predicted to encode 1,437, 63 and 19 orfs, respectively. The overall GC content of the chromosome is 34.71%. Several specific features appear to contribute to the ability of L. sanfranciscensis to outcompete other bacteria in the fermentation. L. sanfranciscensis contains the smallest genome within the lactobacilli and the highest density of ribosomal RNA operons per Mbp genome among all known genomes of free-living bacteria, which is important for the rapid growth characteristics of the organism. A high frequency of gene inactivation and elimination indicates a process of reductive evolution. The biosynthetic capacity for amino acids scarcely availably in cereals and exopolysaccharides reveal the molecular basis for an autochtonous sourdough organism with potential for further exploitation in functional foods. The presence of two CRISPR/cas loci versus a high number of transposable elements suggests recalcitrance to gene intrusion and high intrinsic genome plasticity.
Collapse
Affiliation(s)
- Rudi F Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, 85350 Freising, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Nikolić M, Tolinacki M, Fira D, Golić N, Topisirović L. Variation in specificity of the PrtP extracellular proteinases in Lactococcus lactis and Lactobacillus paracasei subsp. paracasei. Folia Microbiol (Praha) 2009; 54:188-94. [PMID: 19649733 DOI: 10.1007/s12223-009-0029-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 01/12/2009] [Indexed: 10/20/2022]
Abstract
Comparison of cell-wall-bound extracellular proteinases (CEPs) from Lactobacillus paracasei (LBP) ssp. paracasei natural isolates BGHN14, BGAR75 and BGAR76 with Lactococcus lactis (LCL) ssp. cremoris Wg2, in their action on alpha(S1)-, beta- and kappa-casein was done. The CEPs of LBP strains were able to degrade alpha(S1)- and beta-caseins and their caseinolytic specificity depended on the type of buffer used. These CEPs, compared with LCL Wg2, differ in four amino acid residues in small segments predicted to be involved in substrate binding. The most striking features of this comparison are the presence of Ala instead of Ser(329) and the presence of Thr instead of Asn(256) and Ala(299), in the subtilisin-like region of the CEP in LBP natural isolates. Additional conservative amino acid substitution Leu to Ile(364) was found.
Collapse
Affiliation(s)
- M Nikolić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | | | | | | |
Collapse
|