1
|
Cebrián R, Xu C, Xia Y, Wu W, Kuipers OP. The cathelicidin-derived close-to-nature peptide D-11 sensitises Klebsiella pneumoniae to a range of antibiotics in vitro, ex vivo and in vivo. Int J Antimicrob Agents 2021; 58:106434. [PMID: 34525402 DOI: 10.1016/j.ijantimicag.2021.106434] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 02/08/2023]
Abstract
The outer membrane of Gram-negative bacteria constitutes a permeability barrier that prevents certain antibiotics reaching their target, thus conferring a high tolerance to a wide range of antibiotics. Combined therapies of antibiotics and outer membrane-perturbing drugs have been proposed as an alternative treatment to extend the use of antibiotics active against Gram-positive bacteria to Gram-negative bacteria. Among the outer membrane-active compounds, the outer membrane-permeabilising peptides play a prominent role. They form a group of small cationic and amphipathic molecules with the ability to insert specifically into bacterial membranes, inducing their permeabilisation and/or disruption. Here we assessed the combined effect of several compounds belonging to the main antibiotic families and the cathelicidin close-to-nature outer membrane peptide D-11 against four clinically relevant Gram-negative bacteria. The results showed that peptide D-11 displays strong synergistic activity with several antibiotics belonging to different families, in particular against Klebsiella pneumoniae, even better than some other outer membrane-active peptides that are currently in clinical trials, such as SPR741. Notably, we observed this activity in vitro, ex vivo in a newly designed bacteraemia model, and in vivo in a mouse abscess infection model. Overall, our results suggest that D-11 is a good candidate to repurpose the activity of traditional antibiotics against K. pneumoniae.
Collapse
Affiliation(s)
- Rubén Cebrián
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Congjuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 30071, China
| | - Yushan Xia
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 30071, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 30071, China
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
2
|
Wang W, Yu X, Wei Y, Ledesma-Amaro R, Ji XJ. Reprogramming the metabolism of Klebsiella pneumoniae for efficient 1,3-propanediol production. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
3
|
Park JH, Choi MA, Kim YJ, Kim YC, Chang YK, Jeong KJ. Engineering of Klebsiella oxytoca for production of 2,3-butanediol via simultaneous utilization of sugars from a Golenkinia sp. hydrolysate. BIORESOURCE TECHNOLOGY 2017; 245:1386-1392. [PMID: 28601394 DOI: 10.1016/j.biortech.2017.05.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
The Klebsiella oxytoca was engineered to produce 2,3-butanediol (2,3-BDO) simultaneously utilizing glucose and galactose obtained from a Golenkinia sp. hydrolysate. For efficient uptake of galactose at a high concentration of glucose, Escherichia coli galactose permease (GalP) was introduced, and the expression of galP under a weak-strength promoter resulted in simultaneous consumption of galactose and glucose. Next, to improve the sugar consumption, a gene encoding methylglyoxal synthase (MgsA) known as an inhibitor of multisugar metabolism was deleted, and the mgsA-null mutant showed much faster consumption of both sugars than the wild-type strain did. Finally, we demonstrated that the engineered K. oxytoca could utilize sugar extracts from a Golenkinia sp. hydrolysate and successfully produces 2,3-BDO.
Collapse
Affiliation(s)
- Jong Hyun Park
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, KAIST, 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Min Ah Choi
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, KAIST, 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yong Jae Kim
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, KAIST, 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, KAIST, 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, KAIST, 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea; Advanced Biomass R&D Center (ABC), 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, KAIST, 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea; Advanced Biomass R&D Center (ABC), 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea; Institutes for the BioCentury (KIB), KAIST, 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
4
|
Cho S, Kim KD, Ahn JH, Lee J, Kim SW, Um Y. Selective Production of 2,3-Butanediol and Acetoin by a Newly Isolated Bacterium Klebsiella oxytoca M1. Appl Biochem Biotechnol 2013; 170:1922-33. [DOI: 10.1007/s12010-013-0291-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
|
5
|
Naksang C, Sunsandee N, Thamphiphit N, Pancharoen U, Ramakul P, Leepipatpiboon N. Synergistic Enantioseparation of Rac-Phenylalanine via Hollow Fiber Supported Liquid Membrane. SEP SCI TECHNOL 2013. [DOI: 10.1080/01496395.2012.719255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Ji XJ, Nie ZK, Huang H, Ren LJ, Peng C, Ouyang PK. Elimination of carbon catabolite repression in Klebsiella oxytoca for efficient 2,3-butanediol production from glucose-xylose mixtures. Appl Microbiol Biotechnol 2010; 89:1119-25. [PMID: 20957355 DOI: 10.1007/s00253-010-2940-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/03/2010] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
Abstract
Microbial preference for glucose implies incomplete and/or slow utilization of lignocellulose hydrolysates, which is caused by the regulatory mechanism named carbon catabolite repression (CCR). In this study, a 2,3-butanediol (2,3-BD) producing Klebsiella oxytoca strain was engineered to eliminate glucose repression of xylose utilization. The crp(in) gene, encoding the mutant cyclic adenosine monophosphate (cAMP) receptor protein CRP(in), which does not require cAMP for functioning, was characterized and overexpressed in K. oxytoca. The engineered recombinant could utilize a mixture of glucose and xylose simultaneously, without CCR. The profiles of sugar consumption and 2,3-BD production by the engineered recombinant, in glucose and xylose mixtures, were examined and showed that glucose and xylose could be consumed simultaneously to produce 2,3-BD. This study offers a metabolic engineering strategy to achieve highly efficient utilization of sugar mixtures derived from the lignocellulosic biomass for the production of bio-based chemicals using enteric bacteria.
Collapse
Affiliation(s)
- Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | | | | | | | | | | |
Collapse
|
7
|
Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl Microbiol Biotechnol 2009; 85:1751-8. [DOI: 10.1007/s00253-009-2222-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 08/25/2009] [Accepted: 08/25/2009] [Indexed: 10/20/2022]
|