1
|
Showpnil IA, Miller KR, Taslim C, Pishas KI, Lessnick SL, Theisen ER. Mapping the Structure-Function Relationships of Disordered Oncogenic Transcription Factors Using Transcriptomic Analysis. J Vis Exp 2020. [PMID: 32658189 DOI: 10.3791/61564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Many cancers are characterized by chromosomal translocations which result in the expression of oncogenic fusion transcription factors. Typically, these proteins contain an intrinsically disordered domain (IDD) fused with the DNA-binding domain (DBD) of another protein and orchestrate widespread transcriptional changes to promote malignancy. These fusions are often the sole recurring genomic aberration in the cancers they cause, making them attractive therapeutic targets. However, targeting oncogenic transcription factors requires a better understanding of the mechanistic role that low-complexity, IDDs play in their function. The N-terminal domain of EWSR1 is an IDD involved in a variety of oncogenic fusion transcription factors, including EWS/FLI, EWS/ATF, and EWS/WT1. Here, we use RNA-sequencing to investigate the structural features of the EWS domain important for transcriptional function of EWS/FLI in Ewing sarcoma. First shRNA-mediated depletion of the endogenous fusion from Ewing sarcoma cells paired with ectopic expression of a variety of EWS-mutant constructs is performed. Then RNA-sequencing is used to analyze the transcriptomes of cells expressing these constructs to characterize the functional deficits associated with mutations in the EWS domain. By integrating the transcriptomic analyses with previously published information about EWS/FLI DNA binding motifs, and genomic localization, as well as functional assays for transforming ability, we were able to identify structural features of EWS/FLI important for oncogenesis and define a novel set of EWS/FLI target genes critical for Ewing sarcoma. This paper demonstrates the use of RNA-sequencing as a method to map the structure-function relationship of the intrinsically disordered domain of oncogenic transcription factors.
Collapse
Affiliation(s)
- Iftekhar A Showpnil
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital; Molecular, Cellular, and Developmental Biology Program, The Ohio State University
| | - Kyle R Miller
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital
| | - Cenny Taslim
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital
| | - Kathleen I Pishas
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital
| | - Stephen L Lessnick
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital; Division of Pediatric Hematology/Oncology/Blood & Marrow Transplant, The Ohio State University
| | - Emily R Theisen
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital; Department of Pediatrics, The Ohio State University;
| |
Collapse
|
2
|
Dupain C, Harttrampf AC, Boursin Y, Lebeurrier M, Rondof W, Robert-Siegwald G, Khoueiry P, Geoerger B, Massaad-Massade L. Discovery of New Fusion Transcripts in a Cohort of Pediatric Solid Cancers at Relapse and Relevance for Personalized Medicine. Mol Ther 2018; 27:200-218. [PMID: 30509566 DOI: 10.1016/j.ymthe.2018.10.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/18/2018] [Accepted: 10/26/2018] [Indexed: 12/16/2022] Open
Abstract
We hypothetized that pediatric cancers would more likely harbor fusion transcripts. To dissect the complexity of the fusions landscape in recurrent solid pediatric cancers, we conducted a study on 48 patients with different relapsing or resistant malignancies. By analyzing RNA sequencing data with a new in-house pipeline for fusions detection named ChimComp, followed by verification by real-time PCR, we identified and classified the most confident fusion transcripts (FTs) according to their potential biological function and druggability. The majority of FTs were predicted to affect key cancer pathways and described to be involved in oncogenesis. Contrary to previous descriptions, we found no significant correlation between the number of fusions and mutations, emphasizing the particularity to study pre-treated pediatric patients. A considerable proportion of FTs containing tumor suppressor genes was detected, reflecting their importance in pediatric cancers. FTs containing non-receptor tyrosine kinases occurred at low incidence and predominantly in brain tumors. Remarkably, more than 30% of patients presented a potentially druggable high-confidence fusion. In conclusion, we detected new oncogenic FTs in relapsing pediatric cancer patients by establishing a robust pipeline that can be applied to other malignancies, to detect and prioritize experimental validation studies leading to the development of new therapeutic options.
Collapse
Affiliation(s)
- Célia Dupain
- Université Paris-Sud 11, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; CNRS, Villejuif, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; Gustave Roussy, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France
| | - Anne C Harttrampf
- Université Paris-Sud 11, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; CNRS, Villejuif, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; Gustave Roussy, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; Gustave Roussy, Department of Pediatric and Adolescent Oncology, Villejuif 94805, France
| | - Yannick Boursin
- Gustave Roussy, Bioinformatics Platform, AMMICA, INSERM US23/CNRS UMS3655, Villejuif 94805, France
| | - Manuel Lebeurrier
- Gustave Roussy, Bioinformatics Platform, AMMICA, INSERM US23/CNRS UMS3655, Villejuif 94805, France
| | - Windy Rondof
- Université Paris-Sud 11, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; CNRS, Villejuif, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; Gustave Roussy, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; Gustave Roussy, Bioinformatics Platform, AMMICA, INSERM US23/CNRS UMS3655, Villejuif 94805, France
| | | | - Pierre Khoueiry
- American University of Beirut, Faculty of Medicine, Department of Biochemistry and Molecular Genetics, P.O. Box 11-0236 DTS 419-B, Bliss Street, Beirut, Lebanon
| | - Birgit Geoerger
- Université Paris-Sud 11, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; CNRS, Villejuif, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; Gustave Roussy, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; Gustave Roussy, Department of Pediatric and Adolescent Oncology, Villejuif 94805, France
| | - Liliane Massaad-Massade
- Université Paris-Sud 11, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; CNRS, Villejuif, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France; Gustave Roussy, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805, France.
| |
Collapse
|
3
|
Dupain C, Harttrampf AC, Urbinati G, Geoerger B, Massaad-Massade L. Relevance of Fusion Genes in Pediatric Cancers: Toward Precision Medicine. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 6:315-326. [PMID: 28325298 PMCID: PMC5363511 DOI: 10.1016/j.omtn.2017.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 12/19/2022]
Abstract
Pediatric cancers differ from adult tumors, especially by their very low mutational rate. Therefore, their etiology could be explained in part by other oncogenic mechanisms such as chromosomal rearrangements, supporting the possible implication of fusion genes in the development of pediatric cancers. Fusion genes result from chromosomal rearrangements leading to the juxtaposition of two genes. Consequently, an abnormal activation of one or both genes is observed. The detection of fusion genes has generated great interest in basic cancer research and in the clinical setting, since these genes can lead to better comprehension of the biological mechanisms of tumorigenesis and they can also be used as therapeutic targets and diagnostic or prognostic biomarkers. In this review, we discuss the molecular mechanisms of fusion genes and their particularities in pediatric cancers, as well as their relevance in murine models and in the clinical setting. We also point out the difficulties encountered in the discovery of fusion genes. Finally, we discuss future perspectives and priorities for finding new innovative therapies in childhood cancer.
Collapse
Affiliation(s)
- Célia Dupain
- Vectorology and Anticancer Therapies, UMR 8203 CNRS, University Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Anne Catherine Harttrampf
- Vectorology and Anticancer Therapies, UMR 8203 CNRS, University Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Giorgia Urbinati
- Vectorology and Anticancer Therapies, UMR 8203 CNRS, University Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Birgit Geoerger
- Vectorology and Anticancer Therapies, UMR 8203 CNRS, University Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Liliane Massaad-Massade
- Vectorology and Anticancer Therapies, UMR 8203 CNRS, University Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France.
| |
Collapse
|