1
|
Xin Y, Diling C, Jian Y, Ting L, Guoyan H, Hualun L, Xiaocui T, Guoxiao L, Ou S, Chaoqun Z, Jun Z, Yizhen X. Effects of Oligosaccharides From Morinda officinalis on Gut Microbiota and Metabolome of APP/PS1 Transgenic Mice. Front Neurol 2018; 9:412. [PMID: 29962999 PMCID: PMC6013575 DOI: 10.3389/fneur.2018.00412] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/18/2018] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, lacks preclinical diagnostic biomarkers and therapeutic drugs. Thus, earlier intervention in AD is a top priority. Studies have shown that the gut microbiota influences central nervous system disorders and that prebiotics can improve the cognition of hosts with AD, but these effects are not well understood. Preliminary research has shown that oligosaccharides from Morinda officinalis (OMO) are a useful prebiotic and cause substantial memory improvements in animal models of AD; however, the mechanism is still unclear. Therefore, this study was conducted to investigate whether OMO are clinically effective in alleviating AD by improving gut microbiota. OMO were administered to APP/PS1 transgenic mice, and potential clinical biomarkers of AD were identified with metabolomics and bioinformatics. Behavioral experiments demonstrated that OMO significantly ameliorated the memory of the AD animal model. Histological changes indicated that OMO ameliorated brain tissue swelling and neuronal apoptosis and downregulated the expression of the intracellular AD marker Aβ1−42. 16S rRNA sequencing analyses indicated that OMO maintained the diversity and stability of the microbial community. The data also indicated that OMO are an efficacious prebiotic in an animal model of AD, regulating the composition and metabolism of the gut microbiota. A serum metabolomics assay was performed using UHPLC-LTQ Orbitrap mass spectrometry to delineate the metabolic changes and potential early biomarkers in APP/PS1 transgenic mice. Multivariate statistical analysis showed that 14 metabolites were significantly upregulated, and 8 metabolites were downregulated in the model animals compared to the normal controls. Thus, key metabolites represent early indicators of the development of AD. Overall, we report a drug and signaling pathway with therapeutic potential, including proteins associated with cognitive deficits in normal mice or gene mutations that cause AD.
Collapse
Affiliation(s)
- Yang Xin
- Department of Pharmacy, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,The Fifth Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Chen Diling
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yang Jian
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Liu Ting
- The Fifth Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Hu Guoyan
- The Fifth Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Liang Hualun
- Department of Pharmacy, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tang Xiaocui
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Lai Guoxiao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,College of Pharmacy, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Shuai Ou
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Zheng Chaoqun
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Zhao Jun
- Department of Obstetrics, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xie Yizhen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| |
Collapse
|
2
|
Guo L, Tian J, Du H. Mitochondrial Dysfunction and Synaptic Transmission Failure in Alzheimer's Disease. J Alzheimers Dis 2018; 57:1071-1086. [PMID: 27662318 DOI: 10.3233/jad-160702] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder, in which multiple risk factors converge. Despite the complexity of the etiology of the disease, synaptic failure is the pathological basis of cognitive impairment, the cardinal sign of AD. Decreased synaptic density, compromised synaptic transmission, and defected synaptic plasticity are hallmark synaptic pathologies accompanying AD. However, the mechanisms by which synapses are injured in AD-related conditions have not been fully elucidated. Mitochondria are a critical organelle in neurons. The pivotal role of mitochondria in supporting synaptic function and the concomitant occurrence of mitochondrial dysfunction with synaptic stress in postmortem AD brains as well as AD animal models seem to lend the credibility to the hypothesis that mitochondrial defects underlie synaptic failure in AD. This concept is further strengthened by the protective effect of mitochondrial medicine on synaptic function against the toxicity of amyloid-β, a key player in the pathogenesis of AD. In this review, we focus on the association between mitochondrial dysfunction and synaptic transmission deficits in AD. Impaired mitochondrial energy production, deregulated mitochondrial calcium handling, excess mitochondrial reactive oxygen species generation and release play a crucial role in mediating synaptic transmission deregulation in AD. The understanding of the role of mitochondrial dysfunction in synaptic stress may lead to novel therapeutic strategies for the treatment of AD through the protection of synaptic transmission by targeting to mitochondrial deficits.
Collapse
Affiliation(s)
- Lan Guo
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Jing Tian
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Heng Du
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.,Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Yu J, Kong L, Zhang A, Han Y, Liu Z, Sun H, Liu L, Wang X. High-Throughput Metabolomics for Discovering Potential Metabolite Biomarkers and Metabolic Mechanism from the APPswe/PS1dE9 Transgenic Model of Alzheimer’s Disease. J Proteome Res 2017; 16:3219-3228. [DOI: 10.1021/acs.jproteome.7b00206] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jingbo Yu
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
| | - Ling Kong
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
| | - Aihua Zhang
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
| | - Ying Han
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
| | - Zhidong Liu
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
| | - Hui Sun
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
| | - Liang Liu
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Xijun Wang
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| |
Collapse
|
4
|
Diez I, Erramuzpe A, Escudero I, Mateos B, Cabrera A, Marinazzo D, Sanz-Arigita EJ, Stramaglia S, Cortes Diaz JM. Information Flow Between Resting-State Networks. Brain Connect 2015; 5:554-64. [PMID: 26177254 DOI: 10.1089/brain.2014.0337] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED The resting brain dynamics self-organize into a finite number of correlated patterns known as resting-state networks (RSNs). It is well known that techniques such as independent component analysis can separate the brain activity at rest to provide such RSNs, but the specific pattern of interaction between RSNs is not yet fully understood. To this aim, we propose here a novel method to compute the information flow (IF) between different RSNs from resting-state magnetic resonance imaging. After hemodynamic response function blind deconvolution of all voxel signals, and under the hypothesis that RSNs define regions of interest, our method first uses principal component analysis to reduce dimensionality in each RSN to next compute IF (estimated here in terms of transfer entropy) between the different RSNs by systematically increasing k (the number of principal components used in the calculation). When k=1, this method is equivalent to computing IF using the average of all voxel activities in each RSN. For k≥1, our method calculates the k multivariate IF between the different RSNs. We find that the average IF among RSNs is dimension dependent, increasing from k=1 (i.e., the average voxel activity) up to a maximum occurring at k=5 and to finally decay to zero for k≥10. This suggests that a small number of components (close to five) is sufficient to describe the IF pattern between RSNs. Our method--addressing differences in IF between RSNs for any generic data--can be used for group comparison in health or disease. To illustrate this, we have calculated the inter-RSN IF in a data set of Alzheimer's disease (AD) to find that the most significant differences between AD and controls occurred for k=2, in addition to AD showing increased IF w.r.t. CONTROLS The spatial localization of the k=2 component, within RSNs, allows the characterization of IF differences between AD and controls.
Collapse
Affiliation(s)
- Ibai Diez
- 1 Computational Neuroimaging Lab, Biocruces Health Research Institute, Cruces University Hospital , Barakaldo, Spain
| | - Asier Erramuzpe
- 1 Computational Neuroimaging Lab, Biocruces Health Research Institute, Cruces University Hospital , Barakaldo, Spain
| | - Iñaki Escudero
- 1 Computational Neuroimaging Lab, Biocruces Health Research Institute, Cruces University Hospital , Barakaldo, Spain .,2 Radiology Service, Cruces University Hospital , Barakaldo, Spain
| | - Beatriz Mateos
- 1 Computational Neuroimaging Lab, Biocruces Health Research Institute, Cruces University Hospital , Barakaldo, Spain .,2 Radiology Service, Cruces University Hospital , Barakaldo, Spain
| | | | - Daniele Marinazzo
- 4 Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University , Gent, Belgium
| | | | - Sebastiano Stramaglia
- 6 Dipartimento di Fisica, Universita degli Studi di Bari and INFN , Bari, Italy .,7 BCAM-Basque Center for Applied Mathematics , Bilbao, Spain
| | - Jesus M Cortes Diaz
- 1 Computational Neuroimaging Lab, Biocruces Health Research Institute, Cruces University Hospital , Barakaldo, Spain .,8 Ikerbasque, The Basque Foundation for Science , Bilbao, Spain .,9 Departamento de Biologia Celular e Histologia, University of the Basque Country , Leioa, Spain
| | | |
Collapse
|
5
|
Rytsar R, Fornari E, Frackowiak RS, Ghika JA, Knyazeva MG. Inhibition in early Alzheimer's disease: An fMRI-based study of effective connectivity. Neuroimage 2011; 57:1131-9. [PMID: 21616155 DOI: 10.1016/j.neuroimage.2011.05.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/11/2011] [Accepted: 05/09/2011] [Indexed: 12/29/2022] Open
|
6
|
SON J, SONG S, LEE S, CHANG S, KIM M. Morphological change tracking of dendritic spines based on structural features. J Microsc 2011; 241:261-72. [DOI: 10.1111/j.1365-2818.2010.03427.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Topography of EEG multivariate phase synchronization in early Alzheimer's disease. Neurobiol Aging 2010; 31:1132-44. [DOI: 10.1016/j.neurobiolaging.2008.07.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 07/17/2008] [Accepted: 07/24/2008] [Indexed: 11/21/2022]
|
8
|
Loewenstein DA, Acevedo A, Luis C, Crum T, Barker WW, Duara R. Semantic interference deficits and the detection of mild Alzheimer's disease and mild cognitive impairment without dementia. J Int Neuropsychol Soc 2004; 10:91-100. [PMID: 14751011 DOI: 10.1017/s1355617704101112] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2002] [Revised: 04/22/2003] [Indexed: 11/06/2022]
Abstract
Impairment in delayed recall has traditionally been considered a hallmark feature of Alzheimer's disease (AD). However, vulnerability to semantic interference may reflect early manifestations of the disorder. In this study, 26 mildly demented AD patients (mild AD), 53 patients with mild cognitive impairment without dementia (MCI), and 53 normal community-dwelling elders were first presented 10 common objects that were recalled over 3 learning trials. Subjects were then presented 10 new semantically related objects followed by recall for the original targets. After controlling for the degree of overall memory impairment, mild AD patients demonstrated greater proactive but equivalent retroactive interference relative to MCI patients. Normal elderly subjects exhibited the least amount of proactive and retroactive interference effects. Recall for targets susceptible to proactive interference correctly classified 81.3% of MCI patients and 81.3% of normal elderly subjects, outperforming measures of delayed recall and rate of forgetting. Adding recognition memory scores to the model enhanced both sensitivity (84.6%) and specificity (88.5%). A combination of proactive and retroactive interference measures yielded sensitivity of 84.6% and specificity of 96.2% in differentiating mild AD patients from normal older adults. Susceptibility to proactive semantic interference may be an early cognitive feature of MCI and AD patients presenting for clinical evaluation.
Collapse
Affiliation(s)
- David A Loewenstein
- Department of Psychiatry, Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, Florida 33140, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Arendt T. Disturbance of neuronal plasticity is a critical pathogenetic event in Alzheimer's disease. Int J Dev Neurosci 2001; 19:231-45. [PMID: 11337192 DOI: 10.1016/s0736-5748(01)00007-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Brain areas affected by AD pathology are primarily those structures that are invovled in the regulation of "higher brain functions". The functions these areas subserve such as learning, memory, perception, self-awareness, and consciousness require a life-long re-fittng of synaptic contacts that allows for the acquistion of new epigenetic information, a process based on a particularly high degree of structural plasticity. Here, we outline a hypothesis that it is the "labile state fo differentiation" of a subset of neurons in the adult brain that allows for ongoing neuroplastic processes after development is completed but at the same time renders these neurons particularly vulnerable. Mechanisms of molecular and cellular control of neuronal differentiation and proliferation might, thus, not only play a role during development but critically involved in the pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- T Arendt
- Department of Neuranatomy, Paul Flechsig Institute of Brain Research, University of Leipzig, Jahnallee 59, D-04109, Leipzig, Germany.
| |
Collapse
|
10
|
Arendt T. Alzheimer's disease as a disorder of mechanisms underlying structural brain self-organization. Neuroscience 2001; 102:723-65. [PMID: 11182240 DOI: 10.1016/s0306-4522(00)00516-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mental function has as its cerebral basis a specific dynamic structure. In particular, cortical and limbic areas involved in "higher brain functions" such as learning, memory, perception, self-awareness and consciousness continuously need to be self-adjusted even after development is completed. By this lifelong self-optimization process, the cognitive, behavioural and emotional reactivity of an individual is stepwise remodelled to meet the environmental demands. While the presence of rigid synaptic connections ensures the stability of the principal characteristics of function, the variable configuration of the flexible synaptic connections determines the unique, non-repeatable character of an experienced mental act. With the increasing need during evolution to organize brain structures of increasing complexity, this process of selective dynamic stabilization and destabilization of synaptic connections becomes more and more important. These mechanisms of structural stabilization and labilization underlying a lifelong synaptic remodelling according to experience, are accompanied, however, by increasing inherent possibilities of failure and may, thus, not only allow for the evolutionary acquisition of "higher brain function" but at the same time provide the basis for a variety of neuropsychiatric disorders. It is the objective of the present paper to outline the hypothesis that it might be the disturbance of structural brain self-organization which, based on both genetic and epigenetic information, constantly "creates" and "re-creates" the brain throughout life, that is the defect that underlies Alzheimer's disease (AD). This hypothesis is, in particular, based on the following lines of evidence. (1) AD is a synaptic disorder. (2) AD is associated with aberrant sprouting at both the presynaptic (axonal) and postsynaptic (dendritic) site. (3) The spatial and temporal distribution of AD pathology follows the pattern of structural neuroplasticity in adulthood, which is a developmental pattern. (4) AD pathology preferentially involves molecules critical for the regulation of modifications of synaptic connections, i.e. "morphoregulatory" molecules that are developmentally controlled, such as growth-inducing and growth-associated molecules, synaptic molecules, adhesion molecules, molecules involved in membrane turnover, cytoskeletal proteins, etc. (5) Life events that place an additional burden on the plastic capacity of the brain or that require a particularly high plastic capacity of the brain might trigger the onset of the disease or might stimulate a more rapid progression of the disease. In other words, they might increase the risk for AD in the sense that they determine when, not whether, one gets AD. (6) AD is associated with a reactivation of developmental programmes that are incompatible with a differentiated cellular background and, therefore, lead to neuronal death. From this hypothesis, it can be predicted that a therapeutic intervention into these pathogenetic mechanisms is a particular challenge as it potentially interferes with those mechanisms that at the same time provide the basis for "higher brain function".
Collapse
Affiliation(s)
- T Arendt
- Paul Flechsig Institute of Brain Research, Department of Neuroanatomy, University of Leipzig, Jahnallee 59, D-04109, Leipzig, Germany.
| |
Collapse
|
11
|
Retz W, Gsell W, Münch G, Rösler M, Riederer P. Free radicals in Alzheimer's disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1998; 54:221-36. [PMID: 9850931 DOI: 10.1007/978-3-7091-7508-8_22] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease is a neurodegenerative disorder comprising multisystem atrophies probably caused by multifactorial processes. The disease is characterized by typical neuropathology, impaired synaptic function and massive cell loss. The pathobiochemistry of this disorder involves oxidative stress, which accumulates free radicals leading to excessive lipid peroxidation and neuronal degeneration in certain brain regions. Moreover, radical induced disturbances of DNA, proteins and lipid membranes have been measured. The hypothesis has been proposed that cellular events involving oxidative stress may be one basic pathway leading to neurodegeneration in Alzheimer's disease. In this work we report evidence for increased oxidative stress and disturbed defense mechanisms in Alzheimer's disease, which may result in a self-propagating cascade of neurodegenerative events. Furthermore it is evident from experimental data, that aggregation of beta-amyloid and beta-amyloid toxicity is favourably caused by oxidative stress. Therefore, oxidative stress plays a key role in the conversion of soluble to unsoluble beta-amyloid, suggesting that oxidative stress is primary to the beta-amyloid cascade.
Collapse
Affiliation(s)
- W Retz
- Department of Psychiatry, University of Würzburg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
12
|
Jones DG, Harris RJ. An analysis of contemporary morphological concepts of synaptic remodelling in the CNS: perforated synapses revisited. Rev Neurosci 1995; 6:177-219. [PMID: 8717635 DOI: 10.1515/revneuro.1995.6.3.177] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Perforated synapses refer to a synaptic type found in the central nervous system. They are characterized by their large size and by a discontinuity of the postsynaptic density when viewed in transverse sections, and by a doughnut or horseshoe shape when viewed in en face views. Of recent morphological studies, one approach has followed their characteristics throughout development and maturity, while others have concentrated on their probable roles in activities including kindling, long-term potentiation, spatial working memory, differential rearing, and the functioning of neuroleptics. An assessment is made of the hypotheses and models that have proved determinative in the emergence of perforated synapses as being significant in synaptic plasticity. Their distribution and frequency are summarized, with emphasis on the importance of unbiased stereological procedures in their analysis. Using three-dimensional approaches various subtypes are recognized. Of these, a complex or fragmented subtype appears of especial significance in synaptic plasticity. Ideas regarding the life-cycle of perforated synapses are examined. The view that they originate from conventional, non-perforated synapses, enlarge, and subsequently split to give rise to a new generation of non-perforated synapses, is critically assessed. According to an alternative model, perforated and non-perforated synapses constitute separate populations from early in their development, each representing complementary forms of synaptic plasticity. An attempt is also made to discover whether synaptic studies on the human brain in normal aging and in Alzheimer's disease throw light on the role of perforated synapses in synaptic plasticity. The loss of synapses in Alzheimer's disease may include a loss of perforated synapses - of particular relevance for an understanding of certain neuropathological conditions.
Collapse
Affiliation(s)
- D G Jones
- Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
13
|
Dickson DW, Crystal HA, Bevona C, Honer W, Vincent I, Davies P. Correlations of synaptic and pathological markers with cognition of the elderly. Neurobiol Aging 1995; 16:285-98; discussion 298-304. [PMID: 7566338 DOI: 10.1016/0197-4580(95)00013-5] [Citation(s) in RCA: 283] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
It has been suggested that the physical basis for dementia is structural or functional loss of synapses. To confirm this finding, we performed an enzyme-linked immunoassay (ELISA) with a monoclonal antibody (EP10) to a synaptophysin-like protein in brain samples from 45 prospectively studied elderly subjects with an average age of 83.3 +/- 10.1 years. We compared the synaptic marker to immunoreactivity with a newly developed PHF antibody (TG3). The cases were selected on the basis of availability of frozen tissue, and included subjects ranging from clinically normal to end-stage dementia. As an initial assessment, we determined Pearson product moment correlations for two clinical measures--the Blessed test of information, concentration, and memory (BICM) and the Fuld object Memory Evaluation (FOME)--with ELISA data and with traditional pathologic markers. We found strong correlations (p < 0.01-0.001) for BICM with brain weight, neuronal loss in the basal nucleus of Meynert (nbM), counts of senile plaques (SP) in the neocortex and hippocampus, and neurofibrillary tangles (NFT) in all areas except the parahippocampal cortex. Except in the occipital lobe, where paired helical filament changes are relatively uncommon, TG3-immunoreactivity also correlated strongly with BICM. Weak correlations (p < 0.05) were found for BICM with EP10-immunoreactivity in only the temporal and parietal lobes. Only the pathologic variables showed any significant correlations with FOME. Because inclusion of normal subjects with few or no pathologic lesions could have been driving the strong correlations with pathologic markers, we limited the analysis to those subjects with dementia (BICM; 8). After making this correction, EP10-immunoreactivity in all cortical areas and the hippocampus correlated better (p < 0.05-0.01) with BICM but not FOME. The present univariate analysis suggests that synaptic markers may not be the best structural correlate of dementia and that markers indicative of cytoskeletal changes, e.g., SP, NFT and PHF protein accumulation, may be better correlates of dementia in the elderly.
Collapse
Affiliation(s)
- D W Dickson
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Nerve growth factor (NGF) is a well-characterized protein that exerts pharmacological effects on a group of cholinergic neurons known to atrophy in Alzheimer's disease (AD). Considerable evidence from animal studies suggests that NGF may be useful in reversing, halting, or at least slowing the progression of AD-related cholinergic basal forebrain atrophy, perhaps even attenuating the cognitive deficit associated with the disorder. However, many questions remain concerning the role of NGF in AD. Levels of the low-affinity receptor for NGF appear to be at least stable in AD basal forebrain, and the recent finding of AD-related increases in cortical NGF brings into question whether endogenous NGF levels are related to the observed cholinergic atrophy and whether additional NGF will be useful in treating this disorder. Evidence regarding the localization of NGF within the central nervous system and its presumed role in maintaining basal forebrain cholinergic neurons is summarized, followed by a synopsis of the relevant aspects of AD neuropathology. The available data regarding levels of NGF and its receptor in the AD brain, as well as potential roles for NGF in the pathogenesis and treatment of AD, are also reviewed. NGF and its low affinity receptor are abundantly present within the AD brain, although this does not rule out an NGF-related mechanism in the degeneration of basal forebrain neurons, nor does it eliminate the possibility that exogenous NGF may be successfully used to treat AD. Further studies of the degree and distribution of NGF within the human brain in normal aging and in AD, and of the possible relationship between target NGF levels and the status of basal forebrain neurons in vivo, are necessary before engaging in clinical trials.
Collapse
Affiliation(s)
- S A Scott
- Department of Neurosurgery, University of Cincinnati, Ohio 45267-0515
| | | |
Collapse
|
15
|
Martin GM. Abiotrophic gene action in Homo sapiens: potential mechanisms and significance for the pathobiology of aging. Genetica 1993; 91:265-77. [PMID: 8125275 DOI: 10.1007/bf01436003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A subset of genetic loci of Homo sapiens are reviewed that: 1) have the potential for allelic variation (either mutation or polymorphism) such that degenerative and/or proliferative phenotypic aberrations may be of relatively late onset ('abiotrophic'); 2) have phenotypic features which overlap, to some extent, with those of important age-related disorders of man (many of which are systematically tabulated in this review); 3) have had significant characterization at the biochemical genetic level. The ascertainment bias of physicians to discover strong phenotypic effects ('non-leaky' mutations) obscures the fact that, for many such instances, there exist numerous other alleles of lesser effects, including those whose gene actions probably escape the force of natural selection. The patterns of 'normal' aging in Homo sapiens are quite variable and, hence, difficult to define. It seems likely that the 'wild-type' alleles of a number of loci will also be found to have antagonistic pleiotropic effects that contribute to the syndromology of senescence in our species.
Collapse
Affiliation(s)
- G M Martin
- Department of Pathology, University of Washington, Seattle 98195
| |
Collapse
|