1
|
Joseph RC, Kelley SQ, Kim NM, Sandoval NR. Metabolic Engineering and the Synthetic Biology Toolbox for
Clostridium. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
2
|
Fackler N, Heijstra BD, Rasor BJ, Brown H, Martin J, Ni Z, Shebek KM, Rosin RR, Simpson SD, Tyo KE, Giannone RJ, Hettich RL, Tschaplinski TJ, Leang C, Brown SD, Jewett MC, Köpke M. Stepping on the Gas to a Circular Economy: Accelerating Development of Carbon-Negative Chemical Production from Gas Fermentation. Annu Rev Chem Biomol Eng 2021; 12:439-470. [PMID: 33872517 DOI: 10.1146/annurev-chembioeng-120120-021122] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Owing to rising levels of greenhouse gases in our atmosphere and oceans, climate change poses significant environmental, economic, and social challenges globally. Technologies that enable carbon capture and conversion of greenhouse gases into useful products will help mitigate climate change by enabling a new circular carbon economy. Gas fermentation usingcarbon-fixing microorganisms offers an economically viable and scalable solution with unique feedstock and product flexibility that has been commercialized recently. We review the state of the art of gas fermentation and discuss opportunities to accelerate future development and rollout. We discuss the current commercial process for conversion of waste gases to ethanol, including the underlying biology, challenges in process scale-up, and progress on genetic tool development and metabolic engineering to expand the product spectrum. We emphasize key enabling technologies to accelerate strain development for acetogens and other nonmodel organisms.
Collapse
Affiliation(s)
- Nick Fackler
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | | | - Blake J Rasor
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Hunter Brown
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Jacob Martin
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Zhuofu Ni
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Kevin M Shebek
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Rick R Rosin
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Séan D Simpson
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Keith E Tyo
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Richard J Giannone
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA; ,
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA; ,
| | | | - Ching Leang
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Steven D Brown
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , , .,Robert H. Lurie Comprehensive Cancer Center and Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, USA
| | - Michael Köpke
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| |
Collapse
|
3
|
COMPUTER RECOGNITION OF CHEMICAL SUBSTANCES BASED ON THEIR ELECTROPHYSIOLOGICAL CHARACTERISTICS. BIOTECHNOLOGIA ACTA 2019. [DOI: 10.15407/biotech12.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
4
|
|
5
|
Foulquier C, Huang CN, Nguyen NPT, Thiel A, Wilding-Steel T, Soula J, Yoo M, Ehrenreich A, Meynial-Salles I, Liebl W, Soucaille P. An efficient method for markerless mutant generation by allelic exchange in Clostridium acetobutylicum and Clostridium saccharobutylicum using suicide vectors. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:31. [PMID: 30809274 PMCID: PMC6375146 DOI: 10.1186/s13068-019-1364-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Clostridium acetobutylicum and Clostridium saccharobutylicum are Gram-positive, spore-forming, anaerobic bacterium capable of converting various sugars and polysaccharides into solvents (acetone, butanol, and ethanol). The sequencing of their genomes has prompted new approaches to genetic analysis, functional genomics, and metabolic engineering to develop industrial strains for the production of biofuels and bulk chemicals. RESULTS The method used in this paper to knock-out, knock-in, or edit genes in C. acetobutylicum and C. saccharobutylicum combines an improved electroporation method with the use of (i) restrictionless Δupp (which encodes uracil phosphoribosyl-transferase) strains and (ii) very small suicide vectors containing a markerless deletion/insertion cassette, an antibiotic resistance gene (for the selection of the first crossing-over) and upp (from C. acetobutylicum) for subsequent use as a counterselectable marker with the aid of 5-fluorouracil (5-FU) to promote the second crossing-over. This method was successfully used to both delete genes and edit genes in both C. acetobutylicum and C. saccharobutylicum. Among the edited genes, a mutation in the spo0A gene that abolished solvent formation in C. acetobutylicum was introduced in C. saccharobutylicum and shown to produce the same effect. CONCLUSIONS The method described in this study will be useful for functional genomic studies and for the development of industrial strains for the production of biofuels and bulk chemicals.
Collapse
Affiliation(s)
- Celine Foulquier
- LISBP, INSA, University of Toulouse, 135 Avenue de Rangueil, 31077 Toulouse Cedex, France
| | - Ching-Ning Huang
- Chair of Microbiology, Technical University Munchen, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Ngoc-Phuong-Thao Nguyen
- LISBP, INSA, University of Toulouse, 135 Avenue de Rangueil, 31077 Toulouse Cedex, France
- Tan Tao University, School of Medicine, University Avenue, Tan Duc e-City, Duc Hoa, Vietnam
| | - Axel Thiel
- LISBP, INSA, University of Toulouse, 135 Avenue de Rangueil, 31077 Toulouse Cedex, France
| | - Tom Wilding-Steel
- LISBP, INSA, University of Toulouse, 135 Avenue de Rangueil, 31077 Toulouse Cedex, France
| | - Julie Soula
- LISBP, INSA, University of Toulouse, 135 Avenue de Rangueil, 31077 Toulouse Cedex, France
| | - Minyeong Yoo
- LISBP, INSA, University of Toulouse, 135 Avenue de Rangueil, 31077 Toulouse Cedex, France
- BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Blvd, Nottingham, NG7 2JE UK
| | - Armin Ehrenreich
- Chair of Microbiology, Technical University Munchen, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | | | - Wolfgang Liebl
- Chair of Microbiology, Technical University Munchen, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Philippe Soucaille
- LISBP, INSA, University of Toulouse, 135 Avenue de Rangueil, 31077 Toulouse Cedex, France
- BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Blvd, Nottingham, NG7 2JE UK
| |
Collapse
|
6
|
Joseph RC, Kim NM, Sandoval NR. Recent Developments of the Synthetic Biology Toolkit for Clostridium. Front Microbiol 2018; 9:154. [PMID: 29483900 PMCID: PMC5816073 DOI: 10.3389/fmicb.2018.00154] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
The Clostridium genus is a large, diverse group consisting of Gram-positive, spore-forming, obligate anaerobic firmicutes. Among this group are historically notorious pathogens as well as several industrially relevant species with the ability to produce chemical commodities, particularly biofuels, from renewable biomass. Additionally, other species are studied for their potential use as therapeutics. Although metabolic engineering and synthetic biology have been instrumental in improving product tolerance, titer, yields, and feed stock consumption capabilities in several organisms, low transformation efficiencies and lack of synthetic biology tools and genetic parts make metabolic engineering within the Clostridium genus difficult. Progress has recently been made to overcome challenges associated with engineering various Clostridium spp. For example, developments in CRISPR tools in multiple species and strains allow greater capability to produce edits with greater precision, faster, and with higher efficiencies. In this mini-review, we will highlight these recent advances and compare them to established methods for genetic engineering in Clostridium. In addition, we discuss the current state and development of Clostridium-based promoters (constitutive and inducible) and reporters. Future progress in this area will enable more rapid development of strain engineering, which would allow for the industrial exploitation of Clostridium for several applications including bioproduction of several commodity products.
Collapse
Affiliation(s)
- Rochelle C. Joseph
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA, United States
| | - Nancy M. Kim
- Interdisciplinary Bioinnovation PhD Program, Tulane University, New Orleans, LA, United States
| | - Nicholas R. Sandoval
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA, United States
| |
Collapse
|
7
|
Joseph RC, Kim NM, Sandoval NR. Recent Developments of the Synthetic Biology Toolkit for Clostridium. Front Microbiol 2018. [PMID: 29483900 DOI: 10.3389/fmicb.2018.00154/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
The Clostridium genus is a large, diverse group consisting of Gram-positive, spore-forming, obligate anaerobic firmicutes. Among this group are historically notorious pathogens as well as several industrially relevant species with the ability to produce chemical commodities, particularly biofuels, from renewable biomass. Additionally, other species are studied for their potential use as therapeutics. Although metabolic engineering and synthetic biology have been instrumental in improving product tolerance, titer, yields, and feed stock consumption capabilities in several organisms, low transformation efficiencies and lack of synthetic biology tools and genetic parts make metabolic engineering within the Clostridium genus difficult. Progress has recently been made to overcome challenges associated with engineering various Clostridium spp. For example, developments in CRISPR tools in multiple species and strains allow greater capability to produce edits with greater precision, faster, and with higher efficiencies. In this mini-review, we will highlight these recent advances and compare them to established methods for genetic engineering in Clostridium. In addition, we discuss the current state and development of Clostridium-based promoters (constitutive and inducible) and reporters. Future progress in this area will enable more rapid development of strain engineering, which would allow for the industrial exploitation of Clostridium for several applications including bioproduction of several commodity products.
Collapse
Affiliation(s)
- Rochelle C Joseph
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA, United States
| | - Nancy M Kim
- Interdisciplinary Bioinnovation PhD Program, Tulane University, New Orleans, LA, United States
| | - Nicholas R Sandoval
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA, United States
| |
Collapse
|
8
|
Xue C, Zhao J, Chen L, Yang ST, Bai F. Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum. Biotechnol Adv 2017; 35:310-322. [DOI: 10.1016/j.biotechadv.2017.01.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/06/2017] [Accepted: 01/25/2017] [Indexed: 12/20/2022]
|
9
|
Bengelsdorf FR, Poehlein A, Flitsch SK, Linder S, Schiel-Bengelsdorf B, Stegmann BA, Krabben P, Green E, Zhang Y, Minton N, Dürre P. Host Organisms: Clostridium acetobutylicum/ Clostridium beijerinckiiand Related Organisms. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Frank R. Bengelsdorf
- Universität Ulm; Institut für Mikrobiologie und Biotechnologie; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Anja Poehlein
- Georg-August University; Genomic and Applied Microbiology and Göttingen Genomics Laboratory; Göttingen, Grisebachstr. 8 37077 Göttingen Germany
| | - Stefanie K. Flitsch
- Universität Ulm; Institut für Mikrobiologie und Biotechnologie; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Sonja Linder
- Universität Ulm; Institut für Mikrobiologie und Biotechnologie; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Bettina Schiel-Bengelsdorf
- Universität Ulm; Institut für Mikrobiologie und Biotechnologie; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Benjamin A. Stegmann
- Universität Ulm; Institut für Mikrobiologie und Biotechnologie; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Preben Krabben
- Green Biologics Limited; 45A Western Avenue, Milton Park Abingdon Oxfordshire OX14 4RU UK
| | - Edward Green
- CHAIN Biotechnology Limited; Imperial College Incubator, Imperial College London; Level 1 Bessemer Building London SW7 2AZ UK
| | - Ying Zhang
- University of Nottingham; BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences; University Park Nottingham NG7 2RD UK
| | - Nigel Minton
- University of Nottingham; BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences; University Park Nottingham NG7 2RD UK
| | - Peter Dürre
- Universität Ulm; Institut für Mikrobiologie und Biotechnologie; Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
10
|
Cho C, Lee SY. Efficient gene knockdown inClostridium acetobutylicumby synthetic small regulatory RNAs. Biotechnol Bioeng 2016; 114:374-383. [DOI: 10.1002/bit.26077] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/19/2016] [Accepted: 08/07/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Changhee Cho
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST; Daejeon 34141 Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST; Daejeon 34141 Republic of Korea
- BioProcess Engineering Research Center; KAIST; Daejeon Republic of Korea
- BioInformatics Research Center; KAIST; Daejeon Republic of Korea
| |
Collapse
|
11
|
Chen CT, Liao JC. Frontiers in microbial 1-butanol and isobutanol production. FEMS Microbiol Lett 2016; 363:fnw020. [PMID: 26832641 DOI: 10.1093/femsle/fnw020] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2016] [Indexed: 12/14/2022] Open
Abstract
The heavy dependence on petroleum-derived fuel has raised concerns about energy sustainability and climate change, which have prompted researchers to explore fuel production from renewable sources. 1-Butanol and isobutanol are promising biofuels that have favorable properties and can also serve as solvents or chemical feedstocks. Microbial production of these alcohols provides great opportunities to access a wide spectrum of renewable resources. In recent years, research has improved the native 1-butanol production and has engineered isobutanol production in various organisms to explore metabolic diversity and a broad range of substrates. This review focuses on progress in metabolic engineering for the production of these two compounds using various resources.
Collapse
Affiliation(s)
- Chang-Ting Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - James C Liao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
12
|
Ehsaan M, Kuit W, Zhang Y, Cartman ST, Heap JT, Winzer K, Minton NP. Mutant generation by allelic exchange and genome resequencing of the biobutanol organism Clostridium acetobutylicum ATCC 824. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:4. [PMID: 26732067 PMCID: PMC4700727 DOI: 10.1186/s13068-015-0410-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/04/2015] [Indexed: 05/28/2023]
Abstract
BACKGROUND Clostridium acetobutylicum represents a paradigm chassis for the industrial production of the biofuel biobutanol and a focus for metabolic engineering. We have previously developed procedures for the creation of in-frame, marker-less deletion mutants in the pathogen Clostridium difficile based on the use of pyrE and codA genes as counter selection markers. In the current study we sought to test their suitability for use in C. acetobutylicum. RESULTS Both systems readily allowed the isolation of in-frame deletions of the C. acetobutylicum ATCC 824 spo0A and the cac824I genes, leading to a sporulation minus phenotype and improved transformation, respectively. The pyrE-based system was additionally used to inactivate a putative glycogen synthase (CA_C2239, glgA) and the pSOL1 amylase gene (CA_P0168, amyP), leading to lack of production of granulose and amylase, respectively. Their isolation provided the opportunity to make use of one of the key pyrE system advantages, the ability to rapidly complement mutations at appropriate gene dosages in the genome. In both cases, their phenotypes were restored in terms of production of granulose (glgA) and amylase (amyP). Genome re-sequencing of the ATCC 824 COSMIC consortium laboratory strain used revealed the presence of 177 SNVs and 49 Indels, including a 4916-bp deletion in the pSOL1 megaplasmid. A total of 175 SNVs and 48 Indels were subsequently shown to be present in an 824 strain re-acquired (Nov 2011) from the ATCC and are, therefore, most likely errors in the published genome sequence, NC_003030 (chromosome) and NC_001988 (pSOL1). CONCLUSIONS The codA or pyrE counter selection markers appear equally effective in isolating deletion mutants, but there is considerable merit in using a pyrE mutant as the host as, through the use of ACE (Allele-Coupled Exchange) vectors, mutants created (by whatever means) can be rapidly complemented concomitant with restoration of the pyrE allele. This avoids the phenotypic effects frequently observed with high copy number plasmids and dispenses with the need to add antibiotic to ensure plasmid retention. Our study also revealed a surprising number of errors in the ATCC 824 genome sequence, while at the same time emphasising the need to re-sequence commonly used laboratory strains.
Collapse
Affiliation(s)
- Muhammad Ehsaan
- />Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Wouter Kuit
- />Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), University of Nottingham, University Park, Nottingham, NG7 2RD UK
- />MicCell Bioservices B.V., Edisonstraat 101, 7006 RB Doetinchem, The Netherlands
| | - Ying Zhang
- />Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Stephen T. Cartman
- />Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), University of Nottingham, University Park, Nottingham, NG7 2RD UK
- />Intermediates Sustainability, INVISTA Intermediates, Wilton Centre, Redcar, TS10 4RF UK
| | - John T. Heap
- />Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), University of Nottingham, University Park, Nottingham, NG7 2RD UK
- />Department of Life Sciences, Centre for Synthetic Biology and Innovation, Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| | - Klaus Winzer
- />Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Nigel P. Minton
- />Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), University of Nottingham, University Park, Nottingham, NG7 2RD UK
| |
Collapse
|
13
|
Croux C, Nguyen NPT, Lee J, Raynaud C, Saint-Prix F, Gonzalez-Pajuelo M, Meynial-Salles I, Soucaille P. Construction of a restriction-less, marker-less mutant useful for functional genomic and metabolic engineering of the biofuel producer Clostridium acetobutylicum. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:23. [PMID: 26839586 PMCID: PMC4736252 DOI: 10.1186/s13068-016-0432-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/07/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Clostridium acetobutylicum is a gram-positive, spore-forming, anaerobic bacterium capable of converting various sugars and polysaccharides into solvents (acetone, butanol, and ethanol). The sequencing of its genome has prompted new approaches to genetic analysis, functional genomics, and metabolic engineering to develop industrial strains for the production of biofuels and bulk chemicals. RESULTS The method used in this paper to knock-out or knock-in genes in C. acetobutylicum combines the use of an antibiotic-resistance gene for the deletion or replacement of the target gene, the subsequent elimination of the antibiotic-resistance gene with the flippase recombinase system from Saccharomyces cerevisiae, and a C. acetobutylicum strain that lacks upp, which encodes uracil phosphoribosyl-transferase, for subsequent use as a counter-selectable marker. A replicative vector containing (1) a pIMP13 origin of replication from Bacillus subtilis that is functional in Clostridia, (2) a replacement cassette consisting of an antibiotic resistance gene (MLS (R) ) flanked by two FRT sequences, and (3) two sequences homologous to selected regions around target DNA sequence was first constructed. This vector was successfully used to consecutively delete the Cac824I restriction endonuclease encoding gene (CA_C1502) and the upp gene (CA_C2879) in the C. acetobutylicum ATCC824 chromosome. The resulting C. acetobutylicum Δcac1502Δupp strain is marker-less, readily transformable without any previous plasmid methylation and can serve as the host for the "marker-less" genetic exchange system. The third gene, CA_C3535, shown in this study to encode for a type II restriction enzyme (Cac824II) that recognizes the CTGAAG sequence, was deleted using an upp/5-FU counter-selection strategy to improve the efficiency of the method. The restriction-less marker-less strain and the method was successfully used to delete two genes (ctfAB) on the pSOL1 megaplasmid and one gene (ldhA) on the chromosome to get strains no longer producing acetone or l-lactate. CONCLUSIONS The restriction-less, marker-less strain described in this study, as well as the maker-less genetic exchange coupled with positive selection, will be useful for functional genomic studies and for the development of industrial strains for the production of biofuels and bulk chemicals.
Collapse
Affiliation(s)
- Christian Croux
- />LISBP, INSA, University of Toulouse, 135 Avenue de Rangueil, 31077 Toulouse Cedex, France
| | | | - Jieun Lee
- />College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | | | - Florence Saint-Prix
- />LISBP, INSA, University of Toulouse, 135 Avenue de Rangueil, 31077 Toulouse Cedex, France
| | - Maria Gonzalez-Pajuelo
- />LISBP, INSA, University of Toulouse, 135 Avenue de Rangueil, 31077 Toulouse Cedex, France
| | | | - Philippe Soucaille
- />LISBP, INSA, University of Toulouse, 135 Avenue de Rangueil, 31077 Toulouse Cedex, France
- />Metabolic Explorer, Saint-Beauzire, France
| |
Collapse
|
14
|
Ramió-Pujol S, Ganigué R, Bañeras L, Colprim J. How can alcohol production be improved in carboxydotrophic clostridia? Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
I-SceI-mediated scarless gene modification via allelic exchange in Clostridium. J Microbiol Methods 2015; 108:49-60. [DOI: 10.1016/j.mimet.2014.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/21/2014] [Accepted: 11/07/2014] [Indexed: 02/06/2023]
|
16
|
Chemostat cultivation and transcriptional analyses of Clostridium acetobutylicum mutants with defects in the acid and acetone biosynthetic pathways. Appl Microbiol Biotechnol 2014; 98:9777-94. [DOI: 10.1007/s00253-014-6040-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 08/13/2014] [Accepted: 08/20/2014] [Indexed: 12/22/2022]
|
17
|
Lütke-Eversloh T. Application of new metabolic engineering tools for Clostridium acetobutylicum. Appl Microbiol Biotechnol 2014; 98:5823-37. [DOI: 10.1007/s00253-014-5785-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 01/30/2023]
|
18
|
|
19
|
A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen. Appl Environ Microbiol 2012. [PMID: 23204413 DOI: 10.1128/aem.02891-12] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Methods for genetic manipulation of Clostridium ljungdahlii are of interest because of the potential for production of fuels and other biocommodities from carbon dioxide via microbial electrosynthesis or more traditional modes of autotrophy with hydrogen or carbon monoxide as the electron donor. Furthermore, acetogenesis plays an important role in the global carbon cycle. Gene deletion strategies required for physiological studies of C. ljungdahlii have not previously been demonstrated. An electroporation procedure for introducing plasmids was optimized, and four different replicative origins for plasmid propagation in C. ljungdahlii were identified. Chromosomal gene deletion via double-crossover homologous recombination with a suicide vector was demonstrated initially with deletion of the gene for FliA, a putative sigma factor involved in flagellar biogenesis and motility in C. ljungdahlii. Deletion of fliA yielded a strain that lacked flagella and was not motile. To evaluate the potential utility of gene deletions for functional genomic studies and to redirect carbon and electron flow, the genes for the putative bifunctional aldehyde/alcohol dehydrogenases, adhE1 and adhE2, were deleted individually or together. Deletion of adhE1, but not adhE2, diminished ethanol production with a corresponding carbon recovery in acetate. The double deletion mutant had a phenotype similar to that of the adhE1-deficient strain. Expression of adhE1 in trans partially restored the capacity for ethanol production. These results demonstrate the feasibility of genetic investigations of acetogen physiology and the potential for genetic manipulation of C. ljungdahlii to optimize autotrophic biocommodity production.
Collapse
|
20
|
Novel system for efficient isolation of Clostridium double-crossover allelic exchange mutants enabling markerless chromosomal gene deletions and DNA integration. Appl Environ Microbiol 2012; 78:8112-21. [PMID: 22983967 DOI: 10.1128/aem.02214-12] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Isolation of Clostridium mutants based on gene replacement via allelic exchange remains a major limitation for this important genus. Use of a heterologous counterselection marker can facilitate the identification of the generally rare allelic exchange events. We report on the development of an inducible counterselection marker and describe its utility and broad potential in quickly and efficiently generating markerless DNA deletions and integrations at any genomic locus without the need for auxotrophic mutants or the use of the mobile group II introns. This system is based on a codon-optimized mazF toxin gene from Escherichia coli under the control of a lactose-inducible promoter from Clostridium perfringens. This system is potentially applicable to almost all members of the genus Clostridium due to their similarly low genomic GC content and comparable codon usage. We isolated all allelic-exchange-based gene deletions (ca_p0167, sigF, and sigK) or disruptions (ca_p0157 and sigF) we attempted and integrated a 3.6-kb heterologous DNA sequence (made up of a Clostridium ljungdahlii 2.1-kb formate dehydrogenase [fdh] gene plus a FLP recombination target [FRT]-flanked thiamphenicol resistance marker) into the Clostridium acetobutylicum chromosome. Furthermore, we report on the development of a plasmid system with inducible segregational instability, thus enabling efficient deployment of the FLP-FRT system to generate markerless deletion or integration mutants. This enabled expeditious deletion of the thiamphenicol resistance marker from the fdh integrant strain as well as the sigK deletion strain. More generally, our system can potentially be applied to other organisms with underdeveloped genetic tools.
Collapse
|
21
|
Cai G, Jin B, Monis P, Saint C. A genetic and metabolic approach to redirection of biochemical pathways of Clostridium butyricum for enhancing hydrogen production. Biotechnol Bioeng 2012; 110:338-42. [PMID: 22753004 DOI: 10.1002/bit.24596] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 06/14/2012] [Accepted: 06/21/2012] [Indexed: 11/10/2022]
Abstract
Clostridium butyricum, a well known H(2) producing bacterium, produces lactate, butyrate, acetate, ethanol, and CO(2) as its main by-products from glucose. The conversion of pyruvate to lactate, butyrate and ethanol involves oxidation of NADH. It was hypothesized that the NADH could be increased if the formation of these by-products could be eliminated, resulting in enhancing H(2) yield. Herein, this study aimed to establish a genetic and metabolic approach for enhancing H(2) yield via redirection of metabolic pathways of a C. butyricum strain. The ethanol formation pathway was blocked by disruption of aad (encoding aldehyde-alcohol dehydrogenase) using a ClosTron plasmid. Although elimination of ethanol formation alone did not increase hydrogen production, the resulting aad-deficient mutant showed approximately 20% enhanced performance in hydrogen production with the addition of sodium acetate. This work demonstrated the possibility of improving hydrogen yield by eliminating the unfavorable by-products ethanol and lactate.
Collapse
Affiliation(s)
- Guiqin Cai
- School of Earth and Environmental Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | | | |
Collapse
|
22
|
Comparative shotgun proteomic analysis of Clostridium acetobutylicum from butanol fermentation using glucose and xylose. Proteome Sci 2011; 9:66. [PMID: 22008648 PMCID: PMC3212805 DOI: 10.1186/1477-5956-9-66] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 10/18/2011] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Butanol is a second generation biofuel produced by Clostridium acetobutylicum through acetone-butanol-ethanol (ABE) fermentation process. Shotgun proteomics provides a direct approach to study the whole proteome of an organism in depth. This paper focuses on shotgun proteomic profiling of C. acetobutylicum from ABE fermentation using glucose and xylose to understand the functional mechanisms of C. acetobutylicum proteins involved in butanol production. RESULTS We identified 894 different proteins in C. acetobutylicum from ABE fermentation process by two dimensional - liquid chromatography - tandem mass spectrometry (2D-LC-MS/MS) method. This includes 717 proteins from glucose and 826 proteins from the xylose substrate. A total of 649 proteins were found to be common and 22 significantly differentially expressed proteins were identified between glucose and xylose substrates. CONCLUSION Our results demonstrate that flagellar proteins are highly up-regulated with glucose compared to xylose substrate during ABE fermentation. Chemotactic activity was also found to be lost with the xylose substrate due to the absence of CheW and CheV proteins. This is the first report on the shotgun proteomic analysis of C. acetobutylicum ATCC 824 in ABE fermentation between glucose and xylose substrate from a single time data point and the number of proteins identified here is more than any other study performed on this organism up to this report.
Collapse
|
23
|
Inactivation of σF in Clostridium acetobutylicum ATCC 824 blocks sporulation prior to asymmetric division and abolishes σE and σG protein expression but does not block solvent formation. J Bacteriol 2011; 193:2429-40. [PMID: 21421765 DOI: 10.1128/jb.00088-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium acetobutylicum is both a model organism for the understanding of sporulation in solventogenic clostridia and its relationship to solvent formation and an industrial organism for anaerobic acetone-butanol-ethanol (ABE) fermentation. How solvent production is coupled to endospore formation--both stationary-phase events--remains incompletely understood at the molecular level. Specifically, it is unclear how sporulation-specific sigma factors affect solvent formation. Here the sigF gene in C. acetobutylicum was successfully disrupted and silenced. Not only σ(F) but also the sigma factors σ(E) and σ(G) were not detected in the sigF mutant (FKO1), and differentiation was stopped prior to asymmetric division. Since plasmid expression of the spoIIA operon (spoIIAA-spoIIAB-sigF) failed to complement FKO1, the operon was integrated into the FKO1 chromosome to generate strain FKO1-C. In FKO1-C, σ(F) expression was restored along with sporulation and σ(E) and σ(G) protein expression. Quantitative reverse transcription-PCR (RT-PCR) analysis of a select set of genes (csfB, gpr, spoIIP, sigG, lonB, and spoIIR) that could be controlled by σ(F), based on the Bacillus subtilis model, indicated that sigG may be under the control of σ(F), but spoIIR, an important activator of σ(E) in B. subtilis, is not, and neither are the rest of the genes investigated. FKO1 produced solvents at a level similar to that of the parent strain, but solvent levels were dependent on the physiological state of the inoculum. Finally, the complementation strain FKO1-C is the first reported instance of purposeful integration of multiple functional genes into a clostridial chromosome--here, the C. acetobutylicum chromosome--with the aim of altering cell metabolism and differentiation.
Collapse
|
24
|
Jia K, Zhu Y, Zhang Y, Li Y. Group II intron-anchored gene deletion in Clostridium. PLoS One 2011; 6:e16693. [PMID: 21304965 PMCID: PMC3031624 DOI: 10.1371/journal.pone.0016693] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 01/10/2011] [Indexed: 11/18/2022] Open
Abstract
Clostridium plays an important role in commercial and medical use, for which targeted gene deletion is difficult. We proposed an intron-anchored gene deletion approach for Clostridium, which combines the advantage of the group II intron "ClosTron" system and homologous recombination. In this approach, an intron carrying a fragment homologous to upstream or downstream of the target site was first inserted into the genome by retrotransposition, followed by homologous recombination, resulting in gene deletion. A functional unknown operon CAC1493-1494 located in the chromosome, and an operon ctfAB located in the megaplasmid of C. acetobutylicum DSM1731 were successfully deleted by using this approach, without leaving antibiotic marker in the genome. We therefore propose this approach can be used for targeted gene deletion in Clostridium. This approach might also be applicable for gene deletion in other bacterial species if group II intron retrotransposition system is established.
Collapse
Affiliation(s)
- Kaizhi Jia
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
25
|
Dong H, Zhang Y, Dai Z, Li Y. Engineering clostridium strain to accept unmethylated DNA. PLoS One 2010; 5:e9038. [PMID: 20161730 PMCID: PMC2817722 DOI: 10.1371/journal.pone.0009038] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 01/17/2010] [Indexed: 11/18/2022] Open
Abstract
It is difficult to genetically manipulate the medically and biotechnologically important genus Clostridium due to the existence of the restriction and modification (RM) systems. We identified and engineered the RM system of a model clostridial species, C. acetobutylicum, with the aim to allow the host to accept the unmethylated DNA efficiently. A gene CAC1502 putatively encoding the type II restriction endonuclease Cac824I was identified from the genome of C. acetobutylicum DSM1731, and disrupted using the ClosTron system based on group II intron insertion. The resulting strain SMB009 lost the type II restriction endonuclease activity, and can be transformed with unmethylated DNA as efficiently as with methylated DNA. The strategy reported here makes it easy to genetically modify the clostridial species using unmethylated DNA, which will help to advance the understanding of the clostridial physiology from the molecular level.
Collapse
Affiliation(s)
- Hongjun Dong
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Yanping Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zongjie Dai
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Department of Biochemistry and Molecular Biology, University of Science and Technology of China, Hefei, China
| | - Yin Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
26
|
Zheng YN, Li LZ, Xian M, Ma YJ, Yang JM, Xu X, He DZ. Problems with the microbial production of butanol. J Ind Microbiol Biotechnol 2009; 36:1127-38. [PMID: 19562394 DOI: 10.1007/s10295-009-0609-9] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Accepted: 06/04/2009] [Indexed: 10/20/2022]
Abstract
With the incessant fluctuations in oil prices and increasing stress from environmental pollution, renewed attention is being paid to the microbial production of biofuels from renewable sources. As a gasoline substitute, butanol has advantages over traditional fuel ethanol in terms of energy density and hygroscopicity. A variety of cheap substrates have been successfully applied in the production of biobutanol, highlighting the commercial potential of biobutanol development. In this review, in order to better understand the process of acetone-butanol-ethanol production, traditional clostridia fermentation is discussed. Sporulation is probably induced by solvent formation, and the molecular mechanism leading to the initiation of sporulation and solventogenesis is also investigated. Different strategies are employed in the metabolic engineering of clostridia that aim to enhancing solvent production, improve selectivity for butanol production, and increase the tolerance of clostridia to solvents. However, it will be hard to make breakthroughs in the metabolic engineering of clostridia for butanol production without gaining a deeper understanding of the genetic background of clostridia and developing more efficient genetic tools for clostridia. Therefore, increasing attention has been paid to the metabolic engineering of E. coli for butanol production. The importation and expression of a non-clostridial butanol-producing pathway in E. coli is probably the most promising strategy for butanol biosynthesis. Due to the lower butanol titers in the fermentation broth, simultaneous fermentation and product removal techniques have been developed to reduce the cost of butanol recovery. Gas stripping is the best technique for butanol recovery found so far.
Collapse
Affiliation(s)
- Yan-Ning Zheng
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266071 Qingdao, China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS. Fermentative butanol production by clostridia. Biotechnol Bioeng 2008; 101:209-28. [DOI: 10.1002/bit.22003] [Citation(s) in RCA: 773] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. Appl Microbiol Biotechnol 2008; 80:849-62. [DOI: 10.1007/s00253-008-1654-4] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 08/02/2008] [Accepted: 08/04/2008] [Indexed: 12/16/2022]
|
29
|
Watrous MM, Clark S, Kutty R, Huang S, Rudolph FB, Hughes JB, Bennett GN. 2,4,6-trinitrotoluene reduction by an Fe-only hydrogenase in Clostridium acetobutylicum. Appl Environ Microbiol 2003; 69:1542-7. [PMID: 12620841 PMCID: PMC150091 DOI: 10.1128/aem.69.3.1542-1547.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2002] [Accepted: 12/23/2002] [Indexed: 11/20/2022] Open
Abstract
The role of hydrogenase on the reduction of 2,4,6-trinitrotoluene (TNT) in Clostridium acetobutylicum was evaluated. An Fe-only hydrogenase was isolated and identified by using TNT reduction activity as the selection basis. The formation of hydroxylamino intermediates by the purified enzyme corresponded to expected products for this reaction, and saturation kinetics were determined with a K(m) of 152 micro M. Comparisons between the wild type and a mutant strain lacking the region encoding an alternative Fe-Ni hydrogenase determined that Fe-Ni hydrogenase activity did not significantly contribute to TNT reduction. Hydrogenase expression levels were altered in various strains, allowing study of the role of the enzyme in TNT reduction rates. The level of hydrogenase activity in a cell system correlated (R(2) = 0.89) with the organism's ability to reduce TNT. A strain that overexpressed the hydrogenase activity resulted in maintained TNT reduction during late growth phases, which it is not typically observed in wild type strains. Strains exhibiting underexpression of hydrogenase produced slower TNT rates of reduction correlating with the determined level of expression. The isolated Fe-only hydrogenase is the primary catalyst for reducing TNT nitro substituents to the corresponding hydroxylamines in C. acetobutylicum in whole-cell systems. A mechanism for the reaction is proposed. Due to the prevalence of hydrogenase in soil microbes, this research may enhance the understanding of nitroaromatic compound transformation by common microbial communities.
Collapse
Affiliation(s)
- Mary M Watrous
- Civil and Environmental Engineering, Rice University, Houston, TX 77005-1892, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 2002; 66:506-77, table of contents. [PMID: 12209002 PMCID: PMC120791 DOI: 10.1128/mmbr.66.3.506-577.2002] [Citation(s) in RCA: 2319] [Impact Index Per Article: 105.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fundamental features of microbial cellulose utilization are examined at successively higher levels of aggregation encompassing the structure and composition of cellulosic biomass, taxonomic diversity, cellulase enzyme systems, molecular biology of cellulase enzymes, physiology of cellulolytic microorganisms, ecological aspects of cellulase-degrading communities, and rate-limiting factors in nature. The methodological basis for studying microbial cellulose utilization is considered relative to quantification of cells and enzymes in the presence of solid substrates as well as apparatus and analysis for cellulose-grown continuous cultures. Quantitative description of cellulose hydrolysis is addressed with respect to adsorption of cellulase enzymes, rates of enzymatic hydrolysis, bioenergetics of microbial cellulose utilization, kinetics of microbial cellulose utilization, and contrasting features compared to soluble substrate kinetics. A biological perspective on processing cellulosic biomass is presented, including features of pretreated substrates and alternative process configurations. Organism development is considered for "consolidated bioprocessing" (CBP), in which the production of cellulolytic enzymes, hydrolysis of biomass, and fermentation of resulting sugars to desired products occur in one step. Two organism development strategies for CBP are examined: (i) improve product yield and tolerance in microorganisms able to utilize cellulose, or (ii) express a heterologous system for cellulose hydrolysis and utilization in microorganisms that exhibit high product yield and tolerance. A concluding discussion identifies unresolved issues pertaining to microbial cellulose utilization, suggests approaches by which such issues might be resolved, and contrasts a microbially oriented cellulose hydrolysis paradigm to the more conventional enzymatically oriented paradigm in both fundamental and applied contexts.
Collapse
Affiliation(s)
- Lee R Lynd
- Chemical and Biochemical Engineering, Thayer School of Engineering and Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA.
| | | | | | | |
Collapse
|
31
|
Desai RP, Papoutsakis ET. Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum. Appl Environ Microbiol 1999; 65:936-45. [PMID: 10049845 PMCID: PMC91126 DOI: 10.1128/aem.65.3.936-945.1999] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the effectiveness of antisense RNA (as RNA) strategies for metabolic engineering of Clostridium acetobutylicum. Strain ATCC 824(pRD4) was developed to produce a 102-nucleotide asRNA with 87% complementarity to the butyrate kinase (BK) gene. Strain ATCC 824(pRD4) exhibited 85 to 90% lower BK and acetate kinase specific activities than the control strain. Strain ATCC 824(pRD4) also exhibited 45 to 50% lower phosphotransbutyrylase (PTB) and phosphotransacetylase specific activities than the control strain. This strain exhibited earlier induction of solventogenesis, which resulted in 50 and 35% higher final concentrations of acetone and butanol, respectively, than the concentrations in the control. Strain ATCC 824(pRD1) was developed to putatively produce a 698-nucleotide asRNA with 96% complementarity to the PTB gene. Strain ATCC 824(pRD1) exhibited 70 and 80% lower PTB and BK activities, respectively, than the control exhibited. It also exhibited 300% higher levels of a lactate dehydrogenase activity than the control exhibited. The growth yields of ATCC 824(pRD1) were 28% less than the growth yields of the control. While the levels of acids were not affected in ATCC 824(pRD1) fermentations, the acetone and butanol concentrations were 96 and 75% lower, respectively, than the concentrations in the control fermentations. The lower level of solvent production by ATCC 824(pRD1) was compensated for by approximately 100-fold higher levels of lactate production. The lack of any significant impact on butyrate formation fluxes by the lower PTB and BK levels suggests that butyrate formation fluxes are not controlled by the levels of the butyrate formation enzymes.
Collapse
Affiliation(s)
- R P Desai
- Department of Chemical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
32
|
6 Genetic Methods in Clostridia. METHODS IN MICROBIOLOGY 1999. [DOI: 10.1016/s0580-9517(08)70117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
33
|
Abstract
The genes coding for enzymes involved in butanol or butyrate formation were subcloned into a novel Escherichia coli-Clostridium acetobutylicum shuttle vector constructed from pIMP1 and a chloramphenicol acetyl transferase gene. The resulting replicative plasmids, referred to as pTHAAD (aldehyde/alcohol dehydrogenase) and pTHBUT (butyrate operon), were used to complement C. acetobutylicum mutant strains, in which genes encoding aldehyde/alcohol dehydrogenase (aad) or butyrate kinase (buk) had been inactivated by recombination with Emr constructs. Complementation of strain PJC4BK (buk mutant) with pTHBUT restored butyrate kinase activity and butyrate production during exponential growth. Complementation of strain PJC4AAD (aad mutant) with pTHAAD restored NAD(H)-dependent butanol dehydrogenase activity, NAD(H)-dependent butyraldehyde dehydrogenase activity and butanol production during solventogenic growth. The development of an alternative selectable marker makes it is possible to overexpress genes, via replicative plasmids, in mutant strains that lack specific enzyme activities, thereby expanding the number of possible genetic manipulations that can be performed in C. acetobutylicum. Copyright 1998 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- EM Green
- Department of Biochemistry and Cell Biology, Institute of Biosciences and Bioengineering, Rice University, M.S. 140, 6100 Main Street, Houston, Texas 77005-1892, USA
| | | |
Collapse
|
34
|
Abstract
The solvent-forming clostridia have attracted interest because of their ability to convert a range of carbohydrates to end-products such as acetone, butanol and ethanol. Polymeric substrates such as cellulose, hemicellulose and starch are degraded by extracellular enzymes. The majority of cellulolytic clostridia, typified by Clostridium thermocellum, produce a multi-enzyme cellulase complex in which the organization of components is critical for activity against the crystalline substrate. A variety of enzymes involved in degradation of hemicellulose and starch have been identified in different strains. The products of degradation, and other soluble substrates, are accumulated via membrane-bound transport systems which are generally poorly characterized. It is clear, however, that the phosphoenolpyruvate-dependent phosphotransferase system (PTS) plays a major role in solute uptake in several species. Accumulated substrates are converted by intracellular enzymes to end-products characteristic of the organism, with production of ATP to support growth. The metabolic pathways have been described, but understanding of mechanisms of regulation of metabolism is incomplete. Synthesis of extracellular enzymes and membrane-bound transport systems is commonly subject to catabolite repression in the presence of a readily metabolized source of carbon and energy. While many genes encoding cellulases, xylanases and amylases have been cloned and sequenced, little is known of control of their expression. Although the mechanism of catabolite repression in clostridia is not understood, some recent findings implicate a role for the PTS as in other low G-C Gram-positive bacteria. Emphasis has been placed on describing the mechanisms underlying the switch of C. acetobutylicum fermentations from acidogenic to solventogenic metabolism at the end of the growth phase. Factors involved include a lowered pH and accumulation of undissociated butyric acid, intracellular concentration of ATP and reduced pyridine nucleotides, nutrient limitation, and the interplay between pathways of carbon and electron flow. Genes encoding enzymes of solvent pathways have been cloned and sequenced, and their expression correlated with the pattern of end-product formation in fermentations. There is evidence that the initiation of solvent formation may be subject to control mechanisms similar to other stationary-phase phenomena, including sporulation. The application of recently developed techniques for genetic manipulation of the bacterium is improving understanding of the regulatory circuits, but a complete molecular description of the control of solvent formation remains elusive. Experimental manipulation of the pathways of electron flow in other species has been shown to influence the range and yield of fermentation end-products. Acid-forming clostridia can, under appropriate conditions, be induced to form atypical solvents as products. While the mechanisms of regulation of gene expression are not at all understood, the capacity to adapt in this way further illustrates the metabolic flexibility of clostridial strains.
Collapse
Affiliation(s)
- W J Mitchell
- Department of Biological Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
35
|
Boynton ZL, Bennett GN, Rudolph FB. Cloning, sequencing, and expression of genes encoding phosphotransacetylase and acetate kinase from Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 1996; 62:2758-66. [PMID: 8702268 PMCID: PMC168061 DOI: 10.1128/aem.62.8.2758-2766.1996] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The enzymes phosphotransacetylase (PTA) and acetate kinase (AK) catalyze the conversion of acetyl coenzyme A to acetate in the fermentation of Clostridium acetobutylicum. The acetate-producing step is an important element in the acidogenic fermentation stage and generates ATP for clostridial cell growth. The genes pta and ack, encoding PTA and AK, respectively, were cloned and sequenced. Enzyme activity assays were performed on cell extracts from Escherichia coli and C. acetobutylicum harboring the subclone, and both AK and PTA activities were shown to be elevated. DNA sequence analysis showed that the pta and ack genes are adjacent in the clostridial chromosome, with pta upstream. The pta gene encodes a protein of 333 amino acid residues with a calculated molecular mass of 36.2 kDa, and ack encodes a polypeptide of 401 residues with a molecular mass of 44.3 kDa. Primer extension analysis identified a single transcriptional start site located 70 bp upstream of the start codon for the pta gene, suggesting an operon arrangement for these tandem genes. The results from overexpression of ack and pta in C. acetobutylicum showed that the final ratios of acetate to other major products were higher and that there was a greater proportion of two- versus four-carbon-derived products.
Collapse
Affiliation(s)
- Z L Boynton
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | | | |
Collapse
|