Reuter S, Reiermann S, Wörner R, Schröter R, Edemir B, Buck F, Henning S, Peter-Katalinic J, Vollenbröker B, Amann K, Pavenstädt H, Schlatter E, Gabriëls G. IF/TA-related metabolic changes--proteome analysis of rat renal allografts.
Nephrol Dial Transplant 2010;
25:2492-501. [PMID:
20176611 DOI:
10.1093/ndt/gfq043]
[Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND
Chronic allograft nephropathy, now more specifically termed interstitial fibrosis and tubular atrophy without evidence of any specific aetiology (IF/TA), is still an important cause of late graft loss. There is no effective therapy for IF/TA, in part due to the disease's multifactorial nature and its incompletely understood pathogenesis.
METHODS
We used a differential in-gel electrophoresis and mass spectrometry technique to study IF/TA in a renal transplantation model. Dark Agouti (DA) kidneys were allogeneically transplanted to Wistar-Furth (DA-WF, aTX) rats. Syngeneic grafts (DA-DA, sTX) served as controls. Nine weeks after transplantation, blood pressure, renal function and electrolytes were studied, in addition to real-time PCR, western blot analysis, histology and immunohistochemistry.
RESULTS
In contrast to sTX, the aTX developed IF/TA-dependent renal damage. Ten differentially regulated proteins were identified by 2D gel analysis and mass spectrometry, whereupon five proteins are mainly related to oxidative stress (aldo-keto reductase, peroxiredoxin-1, NAD(+)-dependent isocitrate dehydrogenase, iron-responsive element-binding protein-1 and serum albumin), two participate in cytoskeleton organization (l-plastin and ezrin) and three are assigned to metabolic functions (creatine kinase, ornithine aminotransferase and fructose-1,6-bisphosphatase).
CONCLUSION
The proteins related to IF/TA and involved in oxidative stress, cytoskeleton organization and metabolic functions may correspond with novel therapeutic targets.
Collapse